Ejemplo n.º 1
0
 def preprocess(x):
     """Cast to float, normalize, and concatenate images along last axis."""
     x = nest.map_structure(
         lambda image: tf.image.convert_image_dtype(image, tf.float32), x)
     x = nest.flatten(x)
     x = tf.concat(x, axis=-1)
     x = (tf.image.convert_image_dtype(x, tf.float32) - 0.5) * 2.0
     return x
Ejemplo n.º 2
0
 def preprocess(x):
     """Cast to float, normalize, and concatenate images along last axis."""
     import tensorflow as tf
     x = nest.map_structure(
         lambda image: tf.image.convert_image_dtype(image, tf.float32), x)
     x = nest.flatten(x)
     x = tf.concat(x, axis=-1)
     # x = (tf.image.convert_image_dtype(x, tf.float32) - 0.5) * 2.0
     # TODO: Why is the image being converted to float32 twice? Once in the
     # nest and once down here?
     x = (high - low) * tf.image.convert_image_dtype(x, tf.float32) + low
     return x
Ejemplo n.º 3
0
def feedforward_model(hidden_layer_sizes,
                      output_size,
                      activation='relu',
                      output_activation='linear',
                      preprocessors=None,
                      dropout=None,
                      name='feedforward_model',
                      *args,
                      **kwargs):
    def cast_and_concat(x):
        x = nest.map_structure(training_utils.cast_if_floating_dtype, x)
        x = nest.flatten(x)
        x = tf.concat(x, axis=-1)
        return x

    if dropout:
        layers = nest.flatten([[
            tf.keras.layers.Dense(hidden_layer_size,
                                  *args,
                                  activation=activation,
                                  **kwargs),
            tf.keras.layers.Dropout(dropout)
        ] for hidden_layer_size in hidden_layer_sizes])
    else:
        layers = [
            tf.keras.layers.Dense(hidden_layer_size,
                                  *args,
                                  activation=activation,
                                  **kwargs)
            for hidden_layer_size in hidden_layer_sizes
        ]

    model = PicklableSequential(
        (tfkl.Lambda(cast_and_concat), *layers,
         tf.keras.layers.Dense(
             output_size, *args, activation=output_activation, **kwargs)),
        name=name)

    return model
Ejemplo n.º 4
0
 def cast_and_concat(x):
     x = nest.map_structure(lambda element: tf.cast(element, tf.float32), x)
     x = nest.flatten(x)
     x = tf.concat(x, axis=-1)
     return x
Ejemplo n.º 5
0
def flatten_input_structure(inputs):
    inputs_flat = nest.flatten(inputs)
    return inputs_flat
Ejemplo n.º 6
0
 def cast_and_concat(x):
     x = nest.map_structure(training_utils.cast_if_floating_dtype, x)
     x = nest.flatten(x)
     x = tf.concat(x, axis=-1)
     return x