Ejemplo n.º 1
0
    def _train(self, env, policy, pool):
        """Perform RL training.

        Args:
            env (`rllab.Env`): Environment used for training
            policy (`Policy`): Policy used for training
            pool (`PoolBase`): Sample pool to add samples to
        """
        self._init_training()
        self.sampler.initialize(env, policy, pool)

        evaluation_env = deep_clone(env) if self._eval_n_episodes else None

        with tf_utils.get_default_session().as_default():
            gt.rename_root('RLAlgorithm')
            gt.reset()
            gt.set_def_unique(False)

            for epoch in gt.timed_for(range(self._n_epochs + 1),
                                      save_itrs=True):
                logger.push_prefix('Epoch #%d | ' % epoch)

                for t in range(self._epoch_length):
                    self.sampler.sample()
                    if not self.sampler.batch_ready():
                        continue
                    gt.stamp('sample')

                    for i in range(self._n_train_repeat):
                        self._do_training(iteration=t +
                                          epoch * self._epoch_length,
                                          batch=self.sampler.random_batch())
                    gt.stamp('train')

                self._evaluate(policy, evaluation_env)
                gt.stamp('eval')

                params = self.get_snapshot(epoch)
                logger.save_itr_params(epoch, params)

                time_itrs = gt.get_times().stamps.itrs
                time_eval = time_itrs['eval'][-1]
                time_total = gt.get_times().total
                time_train = time_itrs.get('train', [0])[-1]
                time_sample = time_itrs.get('sample', [0])[-1]

                logger.record_tabular('time-train', time_train)
                logger.record_tabular('time-eval', time_eval)
                logger.record_tabular('time-sample', time_sample)
                logger.record_tabular('time-total', time_total)
                logger.record_tabular('epoch', epoch)

                self.sampler.log_diagnostics()

                logger.dump_tabular(with_prefix=False)
                logger.pop_prefix()

            self.sampler.terminate()
Ejemplo n.º 2
0
    def _train(self, env, policy, pool):
        """Perform RL training.

        Args:
            env (`rllab.Env`): Environment used for training
            policy (`Policy`): Policy used for training
            pool (`PoolBase`): Sample pool to add samples to
        """
        self._init_training()
        self.sampler.initialize(env, policy, pool)

        evaluation_env = deep_clone(env) if self._eval_n_episodes else None

        with tf_utils.get_default_session().as_default():
            gt.rename_root('RLAlgorithm')
            gt.reset()
            gt.set_def_unique(False)

            for epoch in gt.timed_for(
                    range(self._n_epochs + 1), save_itrs=True):
                logger.push_prefix('Epoch #%d | ' % epoch)

                for t in range(self._epoch_length):
                    self.sampler.sample()
                    if not self.sampler.batch_ready():
                        continue
                    gt.stamp('sample')

                    for i in range(self._n_train_repeat):
                        self._do_training(
                            iteration=t + epoch * self._epoch_length,
                            batch=self.sampler.random_batch())
                    gt.stamp('train')

                self._evaluate(policy, evaluation_env)
                gt.stamp('eval')

                params = self.get_snapshot(epoch)
                logger.save_itr_params(epoch, params)

                time_itrs = gt.get_times().stamps.itrs
                time_eval = time_itrs['eval'][-1]
                time_total = gt.get_times().total
                time_train = time_itrs.get('train', [0])[-1]
                time_sample = time_itrs.get('sample', [0])[-1]

                logger.record_tabular('time-train', time_train)
                logger.record_tabular('time-eval', time_eval)
                logger.record_tabular('time-sample', time_sample)
                logger.record_tabular('time-total', time_total)
                logger.record_tabular('epoch', epoch)

                self.sampler.log_diagnostics()

                logger.dump_tabular(with_prefix=False)
                logger.pop_prefix()
Ejemplo n.º 3
0
    def _init_training(self, env, policy, pool):
        """Method to be called at the start of training.

        :param env: Environment instance.
        :param policy: Policy instance.
        :return: None
        """

        self.env = env
        if self._eval_n_episodes > 0:
            self._eval_env = deep_clone(env)
        self.policy = policy
        self.pool = pool
Ejemplo n.º 4
0
    def _init_training(self, env, policy, pool):
        """Method to be called at the start of training.

        :param env: Environment instance.
        :param policy: Policy instance.
        :return: None
        """

        self.env = env
        if self._eval_n_episodes > 0:
            self._eval_env = deep_clone(env)
        self.policy = policy
        self.pool = pool