Ejemplo n.º 1
0
    def __init__(self, init_object=None):
        """ Polynomial initialization function
            init_object can be one of
                - list of coefficient
                - dict of index, coefficient
                - SollyaObject (sollya polynomial)
        """
        self.degree = None
        self.coeff_map = {}
        self.sollya_object = None

        if isinstance(init_object, list):
            self.degree = len(init_object)
            for index, coeff_value in enumerate(init_object):
                self.coeff_map[index] = coeff_value

        elif isinstance(init_object, dict):
            self.degree = 0
            for index in init_object:
                self.degree = self.degree if index <= self.degree else index
                self.coeff_map[index] = init_object[index]

        elif isinstance(init_object, SollyaObject):
            self.degree = int(sollya.degree(init_object))
            for index in range(int(self.degree) + 1):
                coeff_value = coeff(init_object, index)
                if coeff_value != 0:
                    self.coeff_map[index] = coeff_value

        self.sollya_object = 0
        # building sollya object
        for index in self.coeff_map:
            self.sollya_object += self.coeff_map[index] * sollya.x**index
Ejemplo n.º 2
0
  def generate_scheme(self):
    #func_implementation = CodeFunction(self.function_name, output_format = self.precision)
    vx = self.implementation.add_input_variable("x", self.get_input_precision()) 

    sollya_precision = self.get_sollya_precision()

    # retrieving processor inverse approximation table
    #dummy_var = Variable("dummy", precision = self.precision)
    #dummy_div_seed = DivisionSeed(dummy_var, precision = self.precision)
    #inv_approx_table = self.processor.get_recursive_implementation(dummy_div_seed, language = None, table_getter = lambda self: self.approx_table_map)
    lo_bound_global = SollyaObject(0.0)
    hi_bound_global = SollyaObject(0.75)
    approx_interval = Interval(lo_bound_global, hi_bound_global)
    approx_interval_size = hi_bound_global - lo_bound_global

    # table creation
    table_index_size = 7
    field_index_size = 2
    exp_index_size = table_index_size - field_index_size

    table_size = 2**table_index_size
    table_index_range = range(table_size)

    local_degree = 9
    coeff_table = ML_Table(dimensions = [table_size, local_degree], storage_precision = self.precision)

    #local_interval_size = approx_interval_size / SollyaObject(table_size)
    #for i in table_index_range:
    #  degree = 6
    #  lo_bound = lo_bound_global + i * local_interval_size
    #  hi_bound = lo_bound_global + (i+1) * local_interval_size
    #  approx_interval = Interval(lo_bound, hi_bound)
    #  local_poly_object, local_error = Polynomial.build_from_approximation_with_error(acos(x), degree, [self.precision] * (degree+1), approx_interval, absolute)
    #  local_error = int(log2(sup(abs(local_error / acos(approx_interval)))))
    #  print approx_interval, local_error

    exp_lo = 2**exp_index_size
    for i in table_index_range:
      lo_bound = (1.0 + (i % 2**field_index_size) * S2**-field_index_size) * S2**(i / 2**field_index_size - exp_lo)
      hi_bound = (1.0 + ((i % 2**field_index_size) + 1) * S2**-field_index_size) * S2**(i / 2**field_index_size - exp_lo)
      local_approx_interval = Interval(lo_bound, hi_bound)
      local_poly_object, local_error = Polynomial.build_from_approximation_with_error(acos(1 - x), local_degree, [self.precision] * (local_degree+1), local_approx_interval, sollya.absolute)
      local_error = int(log2(sup(abs(local_error / acos(1 - local_approx_interval)))))
      coeff_table
      print local_approx_interval, local_error
      for d in xrange(local_degree):
        coeff_table[i][d] = sollya.coeff(local_poly_object.get_sollya_object(), d) 

    table_index = BitLogicRightShift(vx, vx.get_precision().get_field_size() - field_index_size) - (exp_lo << field_index_size)




    print "building mathematical polynomial"
    poly_degree = sup(sollya.guessdegree(acos(x), approx_interval, S2**-(self.precision.get_field_size()))) 
    print "guessed polynomial degree: ", int(poly_degree)
    #global_poly_object = Polynomial.build_from_approximation(log10(1+x)/x, poly_degree, [self.precision]*(poly_degree+1), approx_interval, absolute)

    print "generating polynomial evaluation scheme"
    #_poly = PolynomialSchemeEvaluator.generate_horner_scheme(poly_object, _red_vx, unified_precision = self.precision)

    # building eval error map
    #eval_error_map = {
    #  red_vx: Variable("red_vx", precision = self.precision, interval = red_vx.get_interval()),
    #  log_inv_hi: Variable("log_inv_hi", precision = self.precision, interval = table_high_interval),
    #  log_inv_lo: Variable("log_inv_lo", precision = self.precision, interval = table_low_interval),
    #}
    # computing gappa error
    #poly_eval_error = self.get_eval_error(result, eval_error_map)



    # main scheme
    print "MDL scheme"
    scheme = Statement(Return(vx))
    return scheme
Ejemplo n.º 3
0
    def generate_scheme(self):
        """ generate scheme """
        vx = self.implementation.add_input_variable("x",
                                                    self.get_input_precision())

        # retrieving processor inverse approximation table
        lo_bound_global = SollyaObject(0.0)
        hi_bound_global = SollyaObject(0.75)
        approx_interval = Interval(lo_bound_global, hi_bound_global)
        approx_interval_size = hi_bound_global - lo_bound_global

        # table creation
        table_index_size = 7
        field_index_size = 2
        exp_index_size = table_index_size - field_index_size

        table_size = 2**table_index_size
        table_index_range = range(table_size)

        local_degree = 9
        coeff_table = ML_NewTable(dimensions=[table_size, local_degree],
                                  storage_precision=self.precision)

        exp_lo = 2**exp_index_size
        for i in table_index_range:
            lo_bound = (1.0 + (i % 2**field_index_size) * S2**-field_index_size
                        ) * S2**(i / 2**field_index_size - exp_lo)
            hi_bound = (1.0 +
                        ((i % 2**field_index_size) + 1) * S2**-field_index_size
                        ) * S2**(i / 2**field_index_size - exp_lo)
            local_approx_interval = Interval(lo_bound, hi_bound)
            local_poly_object, local_error = Polynomial.build_from_approximation_with_error(
                acos(1 - sollya.x), local_degree,
                [self.precision] * (local_degree + 1), local_approx_interval,
                sollya.absolute)
            local_error = int(
                log2(sup(abs(local_error / acos(1 - local_approx_interval)))))
            coeff_table
            for d in range(local_degree):
                coeff_table[i][d] = sollya.coeff(
                    local_poly_object.get_sollya_object(), d)

        table_index = BitLogicRightShift(
            vx,
            vx.get_precision().get_field_size() -
            field_index_size) - (exp_lo << field_index_size)

        print "building mathematical polynomial"
        poly_degree = sup(
            sollya.guessdegree(acos(x), approx_interval,
                               S2**-(self.precision.get_field_size())))
        print "guessed polynomial degree: ", int(poly_degree)
        #global_poly_object = Polynomial.build_from_approximation(log10(1+x)/x, poly_degree, [self.precision]*(poly_degree+1), approx_interval, absolute)

        print "generating polynomial evaluation scheme"
        #_poly = PolynomialSchemeEvaluator.generate_horner_scheme(poly_object, _red_vx, unified_precision = self.precision)

        # building eval error map
        #eval_error_map = {
        #  red_vx: Variable("red_vx", precision = self.precision, interval = red_vx.get_interval()),
        #  log_inv_hi: Variable("log_inv_hi", precision = self.precision, interval = table_high_interval),
        #  log_inv_lo: Variable("log_inv_lo", precision = self.precision, interval = table_low_interval),
        #}
        # computing gappa error
        #poly_eval_error = self.get_eval_error(result, eval_error_map)

        # main scheme
        print "MDL scheme"
        scheme = Statement(Return(vx))
        return scheme