Ejemplo n.º 1
0
        lr_decay = lr_decay_base ** max(epoch - m_flat_lr, 0)
        lr = lr * lr_decay # decay lr if it is time

    # RUN MODEL ON TRAINING DATA
    train_ppl, train_loss = run_epoch(model, train_data, True, lr)

    # RUN MODEL ON VALIDATION DATA
    val_ppl, val_loss = run_epoch(model, valid_data)


    # SAVE MODEL IF IT'S THE BEST SO FAR
    if val_ppl < best_val_so_far:
        best_val_so_far = val_ppl
        if args.save_best:
            print("Saving model parameters to best_params.pt")
            torch.save(model.state_dict(), os.path.join(args.save_dir, 'best_params.pt'))
        # NOTE ==============================================
        # You will need to load these parameters into the same model
        # for a couple Problems: so that you can compute the gradient
        # of the loss w.r.t. hidden state as required in Problem 4.1
        # and to sample from the the model as required in Problem 4.2
        # We are not asking you to run on the test data, but if you
        # want to look at test performance you would load the saved
        # model and run on the test data with batch_size=1

    # LOC RESULTS
    train_ppls.append(train_ppl)
    val_ppls.append(val_ppl)
    train_losses.extend(train_loss)
    val_losses.extend(val_loss)
    times.append(time.time() - t0)
Ejemplo n.º 2
0
    if args.optimizer == 'SGD_LR_SCHEDULE':
        lr_decay = lr_decay_base**max(epoch - m_flat_lr, 0)
        lr = lr * lr_decay  # decay lr if it is time

    # RUN MODEL ON TRAINING DATA
    train_ppl, train_loss = run_epoch(model, train_data, True, lr)

    # RUN MODEL ON VALIDATION DATA
    val_ppl, val_loss = run_epoch(model, valid_data)

    # SAVE MODEL IF IT'S THE BEST SO FAR
    if val_ppl < best_val_so_far:
        best_val_so_far = val_ppl
        if args.save_best:
            print("Saving model parameters to best_params.pt")
            torch.save(model.state_dict(),
                       os.path.join(args.save_dir, 'best_params.pt'))
        # NOTE ==============================================
        # You will need to load these parameters into the same model
        # for a couple Problems: so that you can compute the gradient
        # of the loss w.r.t. hidden state as required in Problem 4.1
        # and to sample from the the model as required in Problem 4.2
        # We are not asking you to run on the test data, but if you
        # want to look at test performance you would load the saved
        # model and run on the test data with batch_size=1

    # LOC RESULTS
    train_ppls.append(train_ppl)
    val_ppls.append(val_ppl)
    train_losses.extend(train_loss)
    val_losses.extend(val_loss)