Ejemplo n.º 1
0
from solver import Evolve_RG
import numpy as np
import matplotlib.pyplot as plt
from constants import *
from matplotlib import rc

rc('font',**{'family':'serif','serif':['Times'],'size':14})
rc('text', usetex=True)

env=Evolve_RG.load('example-tstop-universal.pickle')

plt.figure(figsize=(12,5.5))

plt.subplot(1,2,1)
nfreq=len(env.freqs)
tv=env.tv
lums=np.zeros_like(env.corrs)
plt.plot(tv/Myr,env.synch,ls='--',color='black',label='150 MHz uncorrected')
for i in range(nfreq):
    lums[:,i]=env.synch*(env.freqs[i]/env.nu_ref)**-env.alpha*env.corrs[:,i]
    plt.plot(tv/Myr,lums[:,i],label='%.0f MHz' % (env.freqs[i]/1e6))
plt.xscale('log')
plt.yscale('log')
plt.legend(loc=0,fontsize='small')
plt.xlabel('Time (Myr)')
plt.ylabel('Radio luminosity (W Hz$^{-1}$)')
plt.xlim((1,300))
plt.ylim((1e25,3e29))
plt.subplot(1,2,2)
for i in range(1,nfreq):
    plt.plot(tv/Myr,-np.log(lums[:,i]/lums[:,i-1])/np.log(env.freqs[i]/env.freqs[i-1]),label='$\\alpha_{%.0f}^{%.0f}$' % (env.freqs[i]/1e6,env.freqs[i-1]/1e6))
Ejemplo n.º 2
0
naxes = 4
ylabs = ['Length/kpc', 'Axial ratio', 'Mach number', 'L_150/(W/Hz)']
for i in range(naxes):
    axes.append(plt.subplot(naxes / 2, naxes / 2, i + 1))
for ax in axes:
    ax.set_xscale('log')
    ax.set_yscale('log')

tmin = 10**-6
tmax = 300
tv = np.logspace(np.log10(tmin), np.log10(tmax), 100) * Myr

env = Evolve_RG('beta',
                kT=0.86e3 * eV,
                p0=2e-12,
                rc=22 * 1.528714 * kpc,
                beta=0.67,
                do_adiabatic=False,
                q=2.1)
#env=evolve_rg('universal',M500=1e14)
for Q in np.logspace(37.5, 39.5, 5):
    print('solving for jet power', Q, 'W')
    env.solve(Q, tv)
    env.findb()
    env.findsynch(150e6)
    env.findcorrection((150e6, ))

    axes[0].plot(tv / Myr, env.R / kpc, label='Q = %.2g W' % Q)
    axes[1].plot(tv / Myr, env.rlobe, label='Q = %.2g W' % Q)
    axes[2].plot(tv / Myr, env.m1, label='Q = %.2g W' % Q)
    axes[3].plot(env.R / kpc,
Ejemplo n.º 3
0
axes=[]
naxes=4
for i in range(naxes):
    axes.append(plt.subplot(naxes/2,naxes/2,i+1))
for ax in axes:
    ax.set_xscale('log')
    ax.set_yscale('log')

tmin=0
tmax=300
tv=np.logspace(-6,np.log10(tmax),100)*Myr

#env=evolve_rg('universal',M500=1e14)
Q=10**38.5
for i in range(2):
    env=Evolve_RG('beta',kT=0.86e3*eV,p0=2e-12,rc=22*1.528714*kpc,beta=0.67,do_adiabatic=True,q=2.1)
    env.solve(Q,tv,tstop=Myr*(tmax-(i*200)))
    env.findb()
    env.findsynch(150e6)
    env.findcorrection((150e6,))

    axes[0].plot(tv/Myr,env.R/kpc)
    axes[1].plot(tv/Myr,env.rlobe,label='i = %i' % i)
    axes[2].plot(tv/Myr,env.m1)
    axes[3].plot(env.R/kpc,env.synch*env.corrs[:,0])

    env.save('save_tstop_%i.pickle' % i)
#axis1.set_ylim(R/kpc/5,5*R/kpc)
#axis2.set_ylim(enow/5,enow*20)
for ax in axes[0:3]:
    ax.set_xlim((tmin,tmax))
Ejemplo n.º 4
0
# Plot a couple of pressure profiles

from constants import *
from solver import Evolve_RG
import numpy as np
import os.path

xi = 0.4
q = 2.1
labels = ['beta', 'universal']
envs = [
    Evolve_RG('beta',
              kT=2.27e3 * eV,
              p0=4e-12,
              rc=30 * kpc,
              beta=0.67,
              xi=xi,
              q=q),
    Evolve_RG('universal', M500=1e14, xi=xi, q=q)
]

tmin = 0
tmax = 300
tv = np.logspace(-5, np.log10(tmax), 100) * Myr
Q = 2e39

for env, l in zip(envs, labels):
    inname = 'example-' + l + '.pickle'
    outname = 'example-' + l + '-highz.pickle'
    if os.path.isfile(inname):
        env = Evolve_RG.load(inname)
Ejemplo n.º 5
0
        plt.xscale('log')
        plt.yscale('log')
    plt.figure(4)
    plt.xscale('log')
    tmin=0
    tmax=300
    tv=np.logspace(-6,np.log10(tmax),100)*Myr

    if highz:
        g=glob.glob('highz*.pickle')
    else:
        g=glob.glob('save_*.pickle')

    for f in g:
        sdict={}
        env=Evolve_RG.load(f)
        sdict['color']=cm.gist_rainbow((np.log10(env.Q)-36)/4.0)
        sdict['alpha']=((np.log10(env.m500)-11.5)/3.5)**2.0
        plt.figure(1)
        plt.plot(tv/Myr,env.R/kpc,**sdict)
        plt.figure(2)
        plt.plot(env.R/kpc,np.sqrt(env.vl/(np.pi*env.R**3.0)),**sdict)
        plt.figure(3)
        plt.plot(env.R/kpc,env.synch*env.corrs[:,0],zorder=2,**sdict)
        plt.figure(4)
        plt.plot(env.R/kpc,0.55+np.log(env.corrs[:,0]/env.corrs[:,1])/np.log(1400.0/150.0),**sdict)
        #axes[3].plot(env.R/kpc,env.synch)

    #axis1.set_ylim(R/kpc/5,5*R/kpc)
    #axis2.set_ylim(enow/5,enow*20)
    xlabels=['t (Myr)','Lobe length (kpc)','Lobe length (kpc)','Lobe length (kpc)']
Ejemplo n.º 6
0
rc('font', **{'family': 'serif', 'serif': ['Times'], 'size': 14})
rc('text', usetex=True)

tmin = 0
tmax = 200
tv = np.logspace(-6, np.log10(tmax), 200) * Myr

#env=evolve_rg('universal',M500=1e14)
Q = 2e38
envs = []
for beta in [0.55, 0.75, 0.90]:
    for rc in [20, 30, 40]:
        outname = 'beta-%.2f-%i.pickle' % (beta, rc)
        if os.path.isfile(outname):
            envs.append(Evolve_RG.load(outname))
        else:
            rc *= 2.1 * kpc
            envs.append(
                Evolve_RG('beta',
                          kT=2e3 * eV,
                          p0=5.76e-12,
                          rc=rc,
                          beta=beta,
                          qfactor=0.5 * 25 * 730e3,
                          Gamma_j=(5.0 / 3.0)))
            envs[-1].solve(Q, tv)
            envs[-1].save(outname)

for i in range(2):
    for env in envs:
Ejemplo n.º 7
0
naxes=4
plt.figure(figsize=(12,9))
for i in range(naxes):
    axes.append(plt.subplot(naxes/2,naxes/2,i+1))
for ax in axes:
    ax.set_xscale('log')

axes[0].set_yscale('log')
axes[2].set_yscale('log')

names=['beta','universal']
colours=['blue','orange']
labels=['$\\beta$ model','Universal']
for n,c,l in zip(names,colours,labels):
    outname='example-'+n+'.pickle'
    env=Evolve_RG.load(outname)
    tv=env.tv

    axes[0].plot(tv/Myr,env.R/kpc,color=c,label=l+' $R$')
    rlobep=np.sqrt(env.vl/(4*np.pi*env.R))
    axes[0].plot(tv/Myr,env.Rp/kpc,ls=':',color=c,label=l+' $R_\\perp$')
    axes[0].plot(tv/Myr,rlobep/kpc,ls='--',color=c,label=l+' $R_{\\perp, lobe}$')
    if n=='universal': axes[0].plot(tv/Myr,40*(tv/Myr)**0.6,ls='-.',color='green',label='$R \propto t^{3/5}$')
    axes[1].plot(tv/Myr,env.rlobe,color=c)
    axes[2].plot(tv/Myr,env.m1,color=c)
    axes[2].plot(tv/Myr,env.mp1,color=c,ls=':')
    axial=2*rlobep/env.R
    axes[3].plot(tv/Myr,axial,color=c,label=l)

#axis1.set_ylim(R/kpc/5,5*R/kpc)
#axis2.set_ylim(enow/5,enow*20)
Ejemplo n.º 8
0
import pickle
import os

from constants import *
from solver import Evolve_RG

if __name__ == '__main__':
    import sys
    number = int(sys.argv[1]) - 1
    qnum = number // 10
    mnum = number % 10
    print qnum, mnum

    tmin = 0
    tmax = 500
    tv = np.logspace(-6, np.log10(tmax), 100) * Myr
    Qs = np.logspace(36, 40, 13)
    masses = np.logspace(13, 15, 10)
    Q = Qs[qnum]
    m = masses[mnum]
    print 'Doing the run for Q=', Q, 'M=', m
    env = Evolve_RG('universal', M500=m, xi=0.40, q=2.1)
    outfile = 'save_%.1f_%.1f.pickle' % (np.log10(Q), np.log10(m))
    if not os.path.isfile(outfile):
        print 'solving for', Q, m
        env.solve(Q, tv)
        env.findb()
        env.findsynch(150e6)
        env.findcorrection((150e6, 1400e6), do_adiabatic=True)
        env.save(outfile)
Ejemplo n.º 9
0
import numpy as np
from solver import Evolve_RG

t = Table.read('source-table.txt', format='ascii')

l150 = []
d = []
alpha = []
live = []
remnant = []
u = np.random.uniform(size=len(t))
theta = np.arccos(1 - u)

for i, r in enumerate(t):
    inname = 'run-%i.pickle' % i
    env = Evolve_RG.load(inname)
    synch = env.synch[-1] * env.corrs[-1, 0]
    live.append(synch > 0)
    l150.append(synch)
    d.append(env.R[-1])
    if synch > 0:
        alpha.append(0.55 + np.log(env.corrs[-1, 1] / env.corrs[-1, 2]) /
                     np.log(1400.0 / 150.0))
    else:
        alpha.append(np.nan)
    remnant.append((r['lifetime'] + r['Tstart']) < 1000.0)

t['l150'] = l150
t['D'] = d
t['alpha'] = alpha
t['live'] = live
Ejemplo n.º 10
0
from solver import Evolve_RG
import numpy as np
import matplotlib.pyplot as plt
from constants import *
from matplotlib import rc

rc('font',**{'family':'serif','serif':['Times'],'size':14})
rc('text', usetex=True)

env=Evolve_RG.load('dwarf.pickle')

plt.figure(figsize=(12,10))

plt.subplot(2,2,1)
nfreq=len(env.freqs)
tv=env.tv
lums=np.zeros_like(env.corrs)
plt.plot(tv/Myr,env.synch,ls='--',color='black',label='150 MHz uncorrected')
for i in range(nfreq):
    lums[:,i]=env.synch*(env.freqs[i]/env.nu_ref)**-env.alpha*env.corrs[:,i]
    plt.plot(tv/Myr,lums[:,i],label='%.0f MHz' % (env.freqs[i]/1e6))
plt.xscale('log')
plt.yscale('log')
plt.legend(loc=0,fontsize='small')
plt.xlabel('Time (Myr)')
plt.ylabel('Radio luminosity (W Hz$^{-1}$)')
plt.subplot(2,2,2)
for i in range(1,nfreq):
    plt.plot(tv/Myr,-np.log(lums[:,i]/lums[:,i-1])/np.log(env.freqs[i]/env.freqs[i-1]),label='$\\alpha_{%.0f}^{%.0f}$' % (env.freqs[i]/1e6,env.freqs[i-1]/1e6))
plt.xscale('log')
plt.legend(loc=0,fontsize='small')
Ejemplo n.º 11
0
import os

from constants import *
from solver import Evolve_RG

if __name__ == '__main__':
    import sys
    number = int(sys.argv[1]) - 1
    qnum = number // 10
    mnum = number % 10
    print qnum, mnum

    tmin = 0
    tmax = 500
    tv = np.logspace(-6, np.log10(tmax), 100) * Myr
    Qs = np.logspace(36, 40, 13)
    masses = np.logspace(13, 15, 10)
    Q = Qs[qnum]
    m = masses[mnum]
    print 'Doing the run for Q=', Q, 'M=', m
    infile = 'save_%.1f_%.1f.pickle' % (np.log10(Q), np.log10(m))
    env = Evolve_RG.load(infile)
    outfile = 'highz_%.1f_%.1f.pickle' % (np.log10(Q), np.log10(m))
    if not os.path.isfile(outfile):
        print 'solving for', Q, m
        #env.solve(Q,tv)
        #env.findb()
        #env.findsynch(150e6)
        env.findcorrection((150e6, 1400e6), do_adiabatic=True, z=2)
        env.save(outfile)
Ejemplo n.º 12
0
from matplotlib import rc
import os.path

rc('font', **{'family': 'serif', 'serif': ['Times'], 'size': 14})
rc('text', usetex=True)

i = 0
for beta in [0.55, 0.75, 0.90]:
    for rc in [20, 30, 40]:
        color = [
            'orange', 'red', 'firebrick', 'yellowgreen', 'lime', 'darkgreen',
            'dodgerblue', 'royalblue', 'darkblue'
        ][i]
        i += 1

        env = Evolve_RG.load('beta-%.2f-%i.pickle' % (beta, rc))
        tv = env.tv

        plt.plot(tv / Myr, env.vl / (kpc**3.0), color=color, ls='--')

        t = np.loadtxt('/home/mjh/PLUTO/results2/bmb-%i-%i-2s' %
                       (int(beta * 100), rc),
                       skiprows=1)
        stu = 2.9
        slu = 2.1
        plt.plot(t[:, 0] * stu, (t[:, 14] + t[:, 1]) * 0.5 * slu**3.0,
                 color=color,
                 label='$\\beta = %.2f$ $r_c=%.0f$ kpc' %
                 (env.beta, env.rc / kpc))

plt.xscale('log')
Ejemplo n.º 13
0
# Plot a couple of pressure profiles

import matplotlib.pyplot as plt
from constants import *
from solver import Evolve_RG
import numpy as np

from matplotlib import rc
rc('font', **{'family': 'serif', 'serif': ['Times'], 'size': 14})
rc('text', usetex=True)

labels = ['$\\beta$ model', 'Universal']
colours = ['blue', 'orange']
envs = [
    Evolve_RG('beta', kT=2.27e3 * eV, p0=4e-12, rc=30 * kpc, beta=0.67),
    Evolve_RG('universal', M500=1e14)
]

dist = np.logspace(-3, 3.3, 100)
for env, l, c in zip(envs, labels, colours):
    plt.plot(dist, env.pr(dist * kpc), label=l, color=c)
plt.xlabel('Distance (kpc)')
plt.ylabel('Pressure (Pa)')
plt.xscale('log')
plt.yscale('log')
plt.legend(loc=0)
plt.tight_layout()
plt.savefig('prprof.pdf')
from constants import *
from matplotlib import rc

rc('font', **{'family': 'serif', 'serif': ['Times'], 'size': 14})
rc('text', usetex=True)

plt.figure(figsize=(12, 5.5))
done_uncorr = False
for name, label in zip(
    ['example-universal-noad', 'example-universal', 'example-universal-highz'],
    [
        'Radiative only, $z=0$', 'Radiative + adiabatic, $z=0$',
        'Radiative + adiabatic, $z=2$'
    ]):

    env = Evolve_RG.load(name + '.pickle')

    plt.subplot(1, 2, 1)
    nfreq = len(env.freqs)
    tv = env.tv
    lums = np.zeros_like(env.corrs)
    if not done_uncorr:
        plt.plot(tv / Myr,
                 env.synch,
                 ls='--',
                 color='black',
                 label='150 MHz uncorrected')
    for i in range(nfreq):
        lums[:, i] = env.synch * (env.freqs[i] /
                                  env.nu_ref)**-env.alpha * env.corrs[:, i]
    ploti = 0
Ejemplo n.º 15
0
# Example dwarf galaxy profile

from constants import *
from solver import Evolve_RG
import numpy as np
import os.path

xi = 0.4
q = 2.1
env = Evolve_RG('beta',
                kT=1e4 * boltzmann,
                p0=10**0.75 * 3.1e-16,
                rc=0.8 * kpc,
                beta=0.67,
                xi=xi,
                q=q)
outname = 'dwarf.pickle'

tmin = 0
tmax = 100
tv = np.logspace(-5, np.log10(tmax), 100) * Myr
Q = 1e35

env.solve(Q, tv)
env.save(outname)

env.findb()
env.findsynch(150e6)
env.findcorrection((150e6, 330e6, 1.4e9, 5e9, 8e9, 15e9), do_adiabatic=True)
env.save(outname)
Ejemplo n.º 16
0
#!/usr/bin/python

from solver import Evolve_RG
from astropy.table import Table
import sys
from constants import *
import os

t = Table.read('source-table.txt', format='ascii')
lookback = 1000

n = int(sys.argv[1])
r = t[n]
print r
env = Evolve_RG('universal', M500=r['M500'], xi=0.40, q=2.1)
tlimit = lookback - r['Tstart']
tv = np.logspace(-6, np.log10(tlimit), 100) * Myr
outfile = 'run-%i.pickle' % n
if not os.path.isfile(outfile):
    env.solve(r['Q'], tv, tstop=r['lifetime'] * Myr)
    env.findb()
    env.findsynch(150e6)
    env.findcorrection((150e6, 150e6 * (1 + r['z']), 1400e6 * (1 + r['z'])),
                       do_adiabatic=True,
                       z=r['z'],
                       timerange=(99, ))
    env.save('run-%i.pickle' % n)