Ejemplo n.º 1
0
def wp_2_example9():
    g = io.load_from_file("assets/strong parity/example_9.txt")
    (dir_w0, dir_w1) = dirfixwp.partial_solver2(g, 1)
    (ndir_w0, ndir_w1) = fixwp.partial_solver2(g, 1)
    (w0, w1) = sp(g)
    dir_inc_0 = all(s in w0 for s in dir_w0)
    dir_inc_1 = all(s in w1 for s in dir_w1)
    ndir_inc_0 = all(s in w0 for s in ndir_w0)
    ndir_inc_1 = all(s in w1 for s in ndir_w1)
    return dir_inc_0 and dir_inc_1 and ndir_inc_0 and ndir_inc_1
Ejemplo n.º 2
0
def wp_2_example6():
    g = io.load_from_file("assets/strong parity/example_6.txt")
    #only winnable with lambda >=4
    (dir_w0, dir_w1) = dirfixwp.partial_solver2(g, 4)
    (ndir_w0, ndir_w1) = fixwp.partial_solver2(g, 4)
    (w0, w1) = sp(g)
    dir_inc_0 = all(s in w0 for s in dir_w0)
    dir_inc_1 = all(s in w1 for s in dir_w1)
    ndir_inc_0 = all(s in w0 for s in ndir_w0)
    ndir_inc_1 = all(s in w1 for s in ndir_w1)
    return dir_inc_0 and dir_inc_1 and ndir_inc_0 and ndir_inc_1
Ejemplo n.º 3
0
def wp_2_example3():
    g = io.load_from_file("assets/strong parity/example_3.txt")
    #better results with lambda = 2 on the basic algorithm
    (dir_w0, dir_w1) = dirfixwp.partial_solver2(g, 2)
    (ndir_w0, ndir_w1) = fixwp.partial_solver2(g, 2)
    (w0, w1) = sp(g)
    dir_inc_0 = all(s in w0 for s in dir_w0)
    dir_inc_1 = all(s in w1 for s in dir_w1)
    ndir_inc_0 = all(s in w0 for s in ndir_w0)
    ndir_inc_1 = all(s in w1 for s in ndir_w1)
    return dir_inc_0 and dir_inc_1 and ndir_inc_0 and ndir_inc_1
Ejemplo n.º 4
0
def wp_2_example1():
    g = io.load_from_file("assets/strong parity/example_1.txt")
    (dir_w0, dir_w1) = dirfixwp.partial_solver2(g, 1)
    (ndir_w0, ndir_w1) = fixwp.partial_solver2(g, 1)
    (w0, w1) = sp(g)
    #checking if the partial solutions are included in the true solutions
    dir_inc_0 = all(s in w0 for s in dir_w0)
    dir_inc_1 = all(s in w1 for s in dir_w1)
    ndir_inc_0 = all(s in w0 for s in ndir_w0)
    ndir_inc_1 = all(s in w1 for s in ndir_w1)
    return dir_inc_0 and dir_inc_1 and ndir_inc_0 and ndir_inc_1
Ejemplo n.º 5
0
def benchmark_random_wp(n, start_lambda = 1, end_lambda = 10, step_lambda = 1, dir = True, v2 = False, iterations=3, step=10, ret = False, plot=False, path="", prt = True):
    """
    Benchmarks the window parity algorithms for strong parity games using the random game generator.
    Calls window parity partial solver on games generated using the random game generator function.
    Games of size 1 to n are solved and a timer records the time taken to get the solution.The solver can be timed
    several times and the minimum value is selected using optional parameter iterations (to avoid recording time
    spikes and delays due to system load). The result can be plotted using matplotlib.
    :param n: number of nodes in generated graph (nodes is n due to construction).
    :param end_lambda: maximum value of lambda.
    :param start_lambda: starting value of lambda.
    :param step_lambda: step to be taken between the different value of lambda.
    :param dir: if True, uses DirFixWP if not, uses FixWP.
    :param v2: if True, uses partial_solver2. If False, uses partial_solver.
    :param iterations: number of times the algorithm is timed (default is 3).
    :param step: step to be taken in the generation.
    :param ret: if True, return the winning region of the games that were not completely solved.
    :param plot: if True, plots the data using matplotlib.
    :param path: path to the file in which to write the result.
    :param prt: True if the prints are activated.
    :return: Percentage of game solved, size of the games such that we return the time taken to resolve those games.
    """

    y = []  # list for the time recordings
    n_ = []  # list for the x values (1 to n)
    per_sol = [] # list for the percentage of the game solved

    total_time = 0  # accumulator to record total time

    nbr_generated = 0  # conserving the number of generated mesures (used to get the index of a mesure)

    chrono = timer.Timer(verbose=False)  # Timer object

    info = "Time to solve (s)"  # info about the current benchmark

    lam = start_lambda #current lambda used by the algorithme

    not_comp_solved = [] #store the game that are not completely solved

    # print first line of output
    if prt:
        print u"Generator".center(40) + "|" + u"Nodes (n)".center(12) + "|" + info.center(40) + "|" + "Percentage solved".center(19) + "|" + "\n" + \
            "-" * 115

    #for each value of lambda
    for lam in range(start_lambda, end_lambda + 1, step_lambda):
        #print current value of lambda
        if prt:
            print "lambda value : ".center(40) + str(lam) + "\n" + "-" * 115
        y_temp = [] # stores time recordings for the current value of lambda
        n_temp = [] # stores the size of the game for the current value of lambda 
        per_sol_temp = [] #stores the resolution percentage of the games for the current value of lambda
        nbr_generated = 0
        # games generated are size 1 to n
        for i in range(1, n + 1, step):
            temp = []  # temp list for #iterations recordings
            prio = randint(0, i)  # number of priorities
            min_out = randint(1, i) # minimum number of out edges
            max_out = randint(min_out, i) #maximum number of out edges
            g = generators.random(i, prio, min_out, max_out)  # generated game

            # #iterations calls to the solver are timed
            for j in range(iterations):
                with chrono:
                    if dir:
                        if v2:
                            (w0, w1) = dirfixwp.partial_solver2(g, lam)  # dirfixwp version 2 call
                        else:
                            (w0, w1) = dirfixwp.partial_solver(g, lam)  # dirfixwp call
                    else:
                        if v2:
                            (w0, w1) = fixwp.partial_solver2(g, lam)  # fixwp version 2 call
                        else:
                            (w0, w1) = fixwp.partial_solver(g, lam)  # fixwp call
                temp.append(chrono.interval)  # add time recording

            min_recording = min(temp)
            percent_solved = ((float(len(w0)) + len(w1)) /(i)) * 100
            #checking if completely solved
            if percent_solved != 100:
                not_comp_solved.append((g, w0, w1))

            y_temp.append(min_recording)  # get the minimum out of #iterations recordings
            n_temp.append(i) 
            per_sol_temp.append(percent_solved)
            total_time += min_recording
            

            if prt:
                print "Random graph".center(40) + "|" + str(i).center(12) + "|" \
                + str(y_temp[nbr_generated]).center(40) + "|" + str(percent_solved).center(19) + "|" + "\n" + "-" * 115

            nbr_generated += 1  # updating the number of generated mesures
        y.append(y_temp)
        n_.append(n_temp)
        per_sol.append(per_sol_temp)


    # at the end, print total time
    if prt:
        print "-" * 115 + "\n" + "Total (s)".center(40) + "|" + "#".center(12) + "|" + \
          str(total_time).center(40) + "|" + "\n" + "-" * 115 + "\n"

    if plot:
        i = 0
        for lam in range(start_lambda, end_lambda + 1, step_lambda):
            fig, ax1 = plt.subplots()
            plt.grid(True)
            plt.title(u"Graphes aléatoires de taille 1 à " + str(n) + " avec lambda = " + str(lam))
            plt.xlabel(u'nombre de nœuds')
            # plt.yscale("log") allows logatithmic y-axis
            ax1.plot(n_[i], y[i], 'g.', label=u"Temps d'exécution", color='b')
            ax1.tick_params('y', colors='b')
            ax1.set_ylabel("Temps d'execution (s)", color = 'b')

            ax2 = ax1.twinx()
            ax2.plot(n_[i], per_sol[i], 'g.', label=u"Pourcentage résolu", color='r')
            ax2.set_ylim([0, 101])
            ax2.set_ylabel("Pourcentage du jeu resolu (%)", color = 'r')
            ax2.tick_params('y', colors='r')
            fig.tight_layout()

            plt.savefig(path+str(lam)+".png", bbox_inches='tight')
            plt.clf()
            plt.close()
            i = i + 1

    if ret:
        return (not_comp_solved, (n_, y))
Ejemplo n.º 6
0
def benchmark_ladder_wp(n, start_lambda = 1, end_lambda = 10, step_lambda = 1, dir = True, v2 = False, iterations=3, step=10, plot=False, path="", save_res = False, path_res = "", prt = True):
    """
    Benchmarks the window parity algorithms for strong parity games using the random game generator.
    Calls window parity partial solver on games generated using the random game generator function.
    Games of size 1 to n are solved and a timer records the time taken to get the solution.The solver can be timed
    several times and the minimum value is selected using optional parameter iterations (to avoid recording time
    spikes and delays due to system load). The result can be plotted using matplotlib.
    :param n: number of nodes in generated graph (nodes is n due to construction).
    :param end_lambda: maximum value of lambda.
    :param start_lambda: starting value of lambda.
    :param step_lambda: step to be taken between the different value of lambda.
    :param dir: if True, uses DirFixWP if not, uses FixWP.
    :param v2: if True, uses partial_solver2. If False, uses partial_solver.
    :param iterations: number of times the algorithm is timed (default is 3).
    :param step: step to be taken in the generation.
    :param plot: if True, plots the data using matplotlib.
    :param path: path to the file in which to write the result.
    :param save_res: if True, save the results on a file.
    :param path_res: path to the file in which to write the result.
    :param prt: True if the prints are activated.
    :return: Percentage of game solved, size of the games such that we return the time taken to resolve those games.
    """
    y = []  # list for the time recordings
    n_ = []  # list for the x values (1 to n)
    per_sol = [] # list for the percentage of the game solved

    total_time = 0  # accumulator to record total time

    nbr_generated = 0  # conserving the number of generated mesures (used to get the index of a mesure)

    chrono = timer.Timer(verbose=False)  # Timer object

    info = "Time to solve (s)"  # info about the current benchmark

    lam = start_lambda #current lambda used by the algorithme

    not_comp_solved = [] #store the game that are not completely solved

    # print first line of output
    if prt:
        print u"Generator".center(40) + "|" + u"Nodes (n)".center(12) + "|" + info.center(40) + "|" + "Percentage solved".center(19) + "|" + "\n" + \
          "-" * 115

    #for each value of lambda
    for lam in range(start_lambda, end_lambda + 1, step_lambda):
        #print current value of lambda
        if prt:
            print "lambda value : ".center(40) + str(lam) + "\n" + "-" * 115
        y_temp = [] # stores time recordings for the current value of lambda
        n_temp = [] # stores the size of the game for the current value of lambda 
        per_sol_temp = [] #stores the resolution percentage of the games for the current value of lambda
        nbr_generated = 0
        # games generated are size 1 to n
        for i in range(1, n + 1, step):
            temp = []  # temp list for #iterations recordings
            g = generators.ladder(i)  # generated game

            # #iterations calls to the solver are timed
            for j in range(iterations):
                with chrono:
                    if dir:
                        if v2:
                            (w0, w1) = dirfixwp.partial_solver2(g, lam)  # dirfixwp version 2 call
                        else:
                            (w0, w1) = dirfixwp.partial_solver(g, lam)  # dirfixwp call
                    else:
                        if v2:
                            (w0, w1) = fixwp.partial_solver2(g, lam)  # fixwp version 2 call
                        else:
                            (w0, w1) = fixwp.partial_solver(g, lam)  # fixwp call
                temp.append(chrono.interval)  # add time recording

            min_recording = min(temp)
            percent_solved = ((len(w0) + len(w1)) /(2*i)) * 100
            if percent_solved != 100:
                not_comp_solved.append((g, w0, w1))
            y_temp.append(min_recording)  # get the minimum out of #iterations recordings
            n_temp.append(i)
            per_sol_temp.append(percent_solved)
            total_time += min_recording
            

            if prt:
                print "Ladder graph".center(40) + "|" + str(i).center(12) + "|" \
                + str(y_temp[nbr_generated]).center(40) + "|" + str(percent_solved).center(19) + "|" + "\n" + "-" * 115

            nbr_generated += 1  # updating the number of generated mesures
        y.append(y_temp)
        n_.append(n_temp)
        per_sol.append(per_sol_temp)


    # at the end, print total time
    if prt:
        print "-" * 115 + "\n" + "Total (s)".center(40) + "|" + "#".center(12) + "|" + \
          str(total_time).center(40) + "|" + "\n" + "-" * 115 + "\n"

    if plot:
        i = 0
        for lam in range(start_lambda, end_lambda + 1, step_lambda):
            fig, ax1 = plt.subplots()
            plt.grid(True)
            plt.title(u"Graphes Ladder de taille 1 à " + str(n) + " avec lambda = " + str(lam))
            plt.xlabel(u'nombre de nœuds')
            # plt.yscale("log") allows logatithmic y-axis
            ax1.plot(n_[i], y[i], 'g.', label=u"Temps d'exécution", color='b')
            ax1.tick_params('y', colors='b')
            ax1.set_ylabel("Temps d'execution (s)", color = 'b')

            ax2 = ax1.twinx()
            ax2.plot(n_[i], per_sol[i], 'g.', label=u"Pourcentage résolu", color='r')
            ax2.set_ylim([0, 101])
            ax2.set_ylabel("Pourcentage du jeu resolu (%)", color = 'r')
            ax2.tick_params('y', colors='r')
            fig.tight_layout()

            plt.savefig(path+str(lam)+".png", bbox_inches='tight')
            plt.clf()
            plt.close()
            i = i + 1

    #save the percent solve for each player for each lambda for each size of game in a txt
    if save_res:
        i = 0
        for lam in range(start_lambda, end_lambda + 1, step_lambda):
            #computing the percent solved for each player for the games not solved completely
            part_solv = 0
            comp_solv = 0
            percent_solv = []
            for (g, w0, w1) in not_comp_solved:
                #one more game not solved completely
                part_solv += 1
                #checking is the solutions are included to the true solutions. Computing the true sols with Zielonka algorithm
                (sp_w0, sp_w1) = sp(g)
                a =  all(s in sp_w1 for s in w1) #cheking if included
                b =  all(s in sp_w0 for s in w0) #cheking if included
                #if not included stop the algorithm 
                if not a or not b:
                    print "Error the solutions found are not included to the true solutions"
                    return -1
                #total percentage solved
                percent_solved_total = ((float(len(w0)) + len(w1)) /(len(sp_w0) + len(sp_w1))) * 100 
                #percentage solved for player 0
                if len(sp_w0) > 0:
                    percent_solved_0 = (float(len(w0)) /len(sp_w0)) * 100
                else:
                    percent_solved_0 = 100
                #percentage solved for player 1
                if len(sp_w1) > 0:
                    percent_solved_1 = (float(len(w1)) /len(sp_w1)) * 100
                else:
                    percent_solved_1 = 100
                #adding the percentages computed to the list + the size of the game
                percent_solv.append((len(g.get_nodes()), percent_solved_total, percent_solved_0, percent_solved_1))
    
            comp_solv += n/step - len(not_comp_solved)

            io.write_benchmark_partial_solver(comp_solv, part_solv, percent_solv, path_res+"_"+str(lam)+".txt", n_[i], y[i], n, 1, lam, False, "")
Ejemplo n.º 7
0
def solver():
    """
    Takes appropriate actions according to the chosen options (using command_line_handler() output).
    """

    # Parsing the command line arguments
    args = command_line_handler()

    if args.mode == "solve":
        """ ----- Solving mode ----- """
        if args.gp:
            g = tools.load_generalized_from_file(
                args.inputFile)  # we have a generalized parity game arena
        else:
            g = tools.load_from_file(
                args.inputFile)  # loading game from the input file
        player = 0  # default player is 0, so solution comes as (W_0,sigma_0), (W_1,sigma_1) or (W_0, W_1)

        # Reachability (target and player is set)
        if args.target is not None:
            player = int(args.target[0]
                         )  # getting player (as int), replacing default player
            target = map(
                int, args.target[1].split(",")
            )  # getting node ids in target (transforming them into int)
            solution = reachability.reachability_solver(
                g, target, player)  # calling reachability solver
            ops.print_solution(solution, player)  # printing the solution

        # Safety (safe set provided)
        if args.safe is not None:
            player = 1  # the player with the reachability objective (to write the solution later)
            safe_set = map(
                int, args.safe[0].split(",")
            )  # getting node ids in safe set (transforming them into int)
            target_set = []
            # adds every node not in the safe set to the target set
            for node in g.get_nodes():
                if not (node in safe_set):
                    target_set.append(node)
            # the solution comes out as (W_1,sigma_1), (W_0,sigma_0)
            solution = reachability.reachability_solver(
                g, target_set, 1
            )  # calling reachability solver with target set for player 1 (2)
            ops.print_solution(
                solution, 1
            )  # printing the solution, player 1 (2) has the reachability objective

        # Weak parity
        elif args.wp:
            solution = weakparity.weak_parity_solver(
                g)  # calling weak parity solver on the game
            ops.print_solution(solution, player)  # printing the solution

        # Strong parity (an algorithm is chosen)
        elif args.parity_algorithm is not None:
            if (args.parity_algorithm == 'recursive'):
                solution = strongparity.strong_parity_solver(
                    g)  # calling recursive algorithm for parity games
                ops.print_solution(
                    solution, player)  # printing the solution (with strategy)
            elif (args.parity_algorithm == 'safety'):
                solution = strongparity.reduction_to_safety_parity_solver(
                    g)  # calling reduction to safety algorithm
                ops.print_winning_regions(
                    solution[0],
                    solution[1])  # printing the solution (without strategy)
            elif (args.parity_algorithm == 'antichain'):
                # calling antichain-based algorithm, assumes indexes start with 1
                solution = strongparity.strong_parity_antichain_based(g, 1)
                ops.print_winning_regions(
                    solution[0],
                    solution[1])  # printing the solution (without strategy)
            else:
                # this should not happen
                solution = None

        # Generalized parity
        elif args.gp:
            solution = generalizedparity.generalized_parity_solver(
                g)  # calling classical algorithm for generalized parity games
            ops.print_winning_regions(
                solution[0],
                solution[1])  # printing the solution (without strategy)

        #Window parity partial solvers
        elif args.windowparity is not None:
            if args.windowparity[0] == 'dirfixwp':
                lam = int(args.windowparity[1])
                v2 = bool(args.windowparity[2])
                if v2:
                    solution = dirfixwp.partial_solver2(
                        g, lam)  #calling the dirfixwp v2 algorithm
                    ops.print_winning_regions(
                        solution[0], solution[1]
                    )  #printing the solutions (without strategy)
                else:
                    solution = dirfixwp.partial_solver(
                        g, lam)  #calling the dirfixwp algorithm
                    ops.print_winning_regions(
                        solution[0], solution[1]
                    )  #printing the solutions (without strategy)

            elif args.windowparity[0] == 'fixwp':
                lam = int(args.windowparity[1])
                v2 = bool(args.windowparity[2])
                if v2:
                    solution = fixwp.partial_solver2(
                        g, lam)  #calling the dirfixwp v2 algorithm
                    ops.print_winning_regions(
                        solution[0], solution[1]
                    )  #printing the solutions (without strategy)
                else:
                    solution = fixwp.partial_solver(
                        g, lam)  #calling the dirfixwp algorithm
                    ops.print_winning_regions(
                        solution[0], solution[1]
                    )  #printing the solutions (without strategy)

        #Winning core partial solver
        elif args.winningcore:
            solution = winningcore.partial_solver(
                g)  #calling the dirfixwp v2 algorithm
            ops.print_winning_regions(
                solution[0],
                solution[1])  #printing the solutions (without strategy)

        # If output option is chosen and the algorithm is the classical algo for generalized parity games, use special
        # function dedicated to writing solution of generalized parity games (need to consider several priorities)
        if (args.outputFile is not None) and args.gp:
            tools.write_generalized_solution_to_file(g, solution[0],
                                                     solution[1],
                                                     args.outputFile)

        # If output option is chosen and the algorithm is the reduction to safety algorithm for parity games or the
        # antichain-based algorithm for parity games then the output is only the winning regions, not the strategies
        elif (args.outputFile
              is not None) and (args.parity_algorithm == 'safety'
                                or args.parity_algorithm == 'antichain'):
            tools.write_solution_to_file_no_strategies(g, solution[0],
                                                       solution[1],
                                                       args.outputFile)

        # If output option is chosen and the algorithm is a partial solver for parity games then the output is only the winning regions, not the strategies.
        elif (args.outputFile is not None) and (args.winningcore is not None or
                                                args.windowparity is not None):
            tools.write_solution_to_file_no_strategies_solvpart(
                g, solution[0], solution[1], args.outputFile)

        # Else the regular regions + strategies are output
        elif args.outputFile is not None:
            tools.write_solution_to_file(g, solution, player, args.outputFile)

    elif args.mode == "bench":
        """ ----- Benchmark mode ----- """
        max = args.max
        step = args.step
        rep = args.repetitions
        plot = args.outputPlot is not None

        # Reachability
        if args.reachability_type is not None:
            if args.reachability_type == 'complete0':
                r_bench.benchmark(max,
                                  generators.complete_graph, [1],
                                  0,
                                  iterations=rep,
                                  step=step,
                                  plot=plot,
                                  regression=True,
                                  order=2,
                                  path=args.outputPlot,
                                  title=u"Graphes complets de taille 1 à " +
                                  str(max))
            elif args.reachability_type == 'complete1':
                r_bench.benchmark(max,
                                  generators.complete_graph, [1],
                                  1,
                                  iterations=rep,
                                  step=step,
                                  plot=plot,
                                  regression=True,
                                  order=2,
                                  path=args.outputPlot,
                                  title=u"Graphes complets de taille 1 à " +
                                  str(max))
            elif args.reachability_type == 'worstcase':
                r_bench.benchmark(max,
                                  generators.reachability_worst_case, [1],
                                  0,
                                  iterations=rep,
                                  step=step,
                                  plot=plot,
                                  regression=True,
                                  order=2,
                                  path=args.outputPlot,
                                  title=u"Graphes 'pire cas' de taille 1 à " +
                                  str(max))

        # Weak parity
        elif args.weakparity_type is not None:
            if args.weakparity_type == 'complete':
                wp_bench.benchmark(max,
                                   generators.complete_graph_weakparity,
                                   iterations=rep,
                                   step=step,
                                   plot=plot,
                                   regression=True,
                                   order=2,
                                   path=args.outputPlot,
                                   title=u"Graphes complets de taille 1 à " +
                                   str(max))
            elif args.weakparity_type == 'worstcase':
                wp_bench.benchmark(max,
                                   generators.weak_parity_worst_case,
                                   iterations=rep,
                                   step=step,
                                   plot=plot,
                                   regression=True,
                                   order=3,
                                   path=args.outputPlot,
                                   title=u"Graphes 'pire cas' de taille 1 à " +
                                   str(max))

        # parity
        elif args.parity_type is not None:
            if args.parity_type == 'recursive-random':
                sp_bench.benchmark_random(max,
                                          iterations=rep,
                                          step=step,
                                          plot=plot,
                                          path=args.outputPlot)
            elif args.parity_type == 'safety-random':
                sp_bench.benchmark_random_reduction(max,
                                                    iterations=rep,
                                                    step=step,
                                                    plot=plot,
                                                    path=args.outputPlot)
            elif args.parity_type == 'antichain-random':
                sp_bench.benchmark_random_antichain_based(max,
                                                          iterations=rep,
                                                          step=step,
                                                          plot=plot,
                                                          path=args.outputPlot)
            elif args.parity_type == 'recursive-worstcase':
                sp_bench.benchmark_worst_case(max,
                                              iterations=rep,
                                              step=step,
                                              plot=plot,
                                              path=args.outputPlot)
            elif args.parity_type == 'safety-worstcase':
                sp_bench.benchmark_worst_case_reduction(max,
                                                        iterations=rep,
                                                        step=step,
                                                        plot=plot,
                                                        path=args.outputPlot)
            elif args.parity_type == 'antichain-worstcase':
                sp_bench.benchmark_worst_case_antichain_based(
                    max,
                    iterations=rep,
                    step=step,
                    plot=plot,
                    path=args.outputPlot)

        # generalized parity
        elif args.genparity_type:
            gp_bench.benchmark_random_k_functions(max,
                                                  3,
                                                  iterations=rep,
                                                  step=step,
                                                  plot=plot,
                                                  path=args.outputPlot)

        elif args.winningcore_type is not None:
            if args.winningcore_type == 'random':
                ps_bench.benchmark_random_wc(max,
                                             iterations=rep,
                                             step=step,
                                             plot=plot,
                                             path=args.outputPlot)
            elif args.winningcore_type == 'ladder':
                ps_bench.benchmark_ladder_wc(max,
                                             iterations=rep,
                                             step=step,
                                             plot=plot,
                                             path=args.outputPlot)
            elif args.winningcore_type == 'worstcase':
                ps_bench.benchmark_worst_case_wc(max,
                                                 iterations=rep,
                                                 step=step,
                                                 plot=plot,
                                                 path=args.outputPlot)

        elif args.windowparity_type is not None:
            min_lambda = int(args.windowparity_type[2])
            max_lambda = int(args.windowparity_type[3])
            step_lambda = int(args.windowparity_type[4])
            v2 = bool(args.windowparity_type[5])
            if args.windowparity_type[0] == 'dirfixwp':
                if args.windowparity_type[1] == 'random':
                    ps_bench.benchmark_random_wp(max,
                                                 start_lambda=min_lambda,
                                                 end_lambda=max_lambda,
                                                 step_lambda=step_lambda,
                                                 dir=True,
                                                 v2=v2,
                                                 iterations=rep,
                                                 step=step,
                                                 plot=plot,
                                                 path=args.outputPlot)
                elif args.windowparity_type[1] == 'ladder':
                    ps_bench.benchmark_ladder_wp(max,
                                                 start_lambda=min_lambda,
                                                 end_lambda=max_lambda,
                                                 step_lambda=step_lambda,
                                                 dir=True,
                                                 v2=v2,
                                                 iterations=rep,
                                                 step=step,
                                                 plot=plot,
                                                 path=args.outputPlot)
                elif args.windowparity_type[1] == 'worstcase':
                    ps_bench.benchmark_worst_case_wp(max,
                                                     start_lambda=min_lambda,
                                                     end_lambda=max_lambda,
                                                     step_lambda=step_lambda,
                                                     dir=True,
                                                     v2=v2,
                                                     iterations=rep,
                                                     step=step,
                                                     plot=plot,
                                                     path=args.outputPlot)
            elif args.windowparity_type[0] == 'fixwp':
                if args.windowparity_type[1] == 'random':
                    ps_bench.benchmark_random_wp(max,
                                                 start_lambda=min_lambda,
                                                 end_lambda=max_lambda,
                                                 step_lambda=step_lambda,
                                                 dir=False,
                                                 v2=v2,
                                                 iterations=rep,
                                                 step=step,
                                                 plot=plot,
                                                 path=args.outputPlot)
                elif args.windowparity_type[1] == 'ladder':
                    ps_bench.benchmark_ladder_wp(max,
                                                 start_lambda=min_lambda,
                                                 end_lambda=max_lambda,
                                                 step_lambda=step_lambda,
                                                 dir=False,
                                                 v2=v2,
                                                 iterations=rep,
                                                 step=step,
                                                 plot=plot,
                                                 path=args.outputPlot)
                elif args.windowparity_type[1] == 'worstcase':
                    ps_bench.benchmark_worst_case_wp(max,
                                                     start_lambda=min_lambda,
                                                     end_lambda=max_lambda,
                                                     step_lambda=step_lambda,
                                                     dir=False,
                                                     v2=v2,
                                                     iterations=rep,
                                                     step=step,
                                                     plot=plot,
                                                     path=args.outputPlot)

    elif args.mode == "test":
        sp_test_result = sp_test.launch_tests()
        wp_test_result = wp_test.launch_tests()
        r_test_result = r_test.launch_tests()
        gp_test_result = gp_test.launch_tests()
        sp_test_result = sp_test.launch_tests()
        buchi_test_result = buchi_test.launch_tests()
        if (sp_test_result and wp_test_result and r_test_result
                and gp_test_result and sp_test_result and buchi_test_result):
            print "All tests passed with success"
        else:
            print "Some tests failed"