Ejemplo n.º 1
0
    if l_in[0].get_value() != 0. and aes_in == []:
        raise ValueError("You setup the l_in but no aes in found.")
    if l_out[0].get_value() != 0. and aes_out == []:
        raise ValueError("You setup the l_out but no aes out found.")
    # Train criterion
    cost_type = CostType.MeanSquared  # CostType.MeanSquared
    # Compile the functions
#    Momentum(0.9, nesterov_momentum=False,
#                           imagenet=False, imagenetDecay=5e-4,
#                           max_colm_norm=False)
    train_updates, eval_fn = theano_fns(
        model, aes_in, aes_out, l_in, l_out, l_sup, l_code, lr,
        cost_type,
        updaters={
            "all": Momentum(0.9, nesterov_momentum=False,
                            imagenet=False, imagenetDecay=5e-4,
                            max_colm_norm=False),
            "in": Momentum(0.9, nesterov_momentum=False,
                           imagenet=False, imagenetDecay=5e-4,
                           max_colm_norm=False),
            "out": Momentum(0.9, nesterov_momentum=False,
                            imagenet=False, imagenetDecay=5e-4,
                            max_colm_norm=False),
            "code": None},
        max_colm_norm=False, max_norm=15.0, eye=False)

    # How to update the weight costs
    updater_wc = StaticAnnealedWeightRate(anneal_end=500, anneal_start=0)
    updater_wc_in = StaticAnnealedWeightRateSingle(anneal_end=500, down=True,
                                                   init_vl=0., end_vl=0.,
                                                   anneal_start=100)
Ejemplo n.º 2
0
 #                           max_colm_norm=False)
 in3D = True
 train_updates, eval_fn = theano_fns(model,
                                     aes_in,
                                     aes_out,
                                     l_in,
                                     l_out,
                                     l_sup,
                                     l_code,
                                     lr,
                                     cost_type,
                                     updaters={
                                         "all":
                                         Momentum(0.9,
                                                  nesterov_momentum=False,
                                                  imagenet=False,
                                                  imagenetDecay=5e-4,
                                                  max_colm_norm=False),
                                         "in":
                                         Momentum(0.9,
                                                  nesterov_momentum=False,
                                                  imagenet=False,
                                                  imagenetDecay=5e-4,
                                                  max_colm_norm=False),
                                         "out":
                                         Momentum(0.9,
                                                  nesterov_momentum=False,
                                                  imagenet=False,
                                                  imagenetDecay=5e-4,
                                                  max_colm_norm=False),
                                         "code":