Ejemplo n.º 1
0
    def extract(s, force_recalc):

        if (not s.has(MSDiagonal.default_name + '_evals_hsort')
                or force_recalc):
            MSDiagonal.get(s)

        ms_evals = s.get_array(MSDiagonal.default_name + '_evals_hsort')

        return _asymmetry(ms_evals)
Ejemplo n.º 2
0
    def extract(s, force_recalc):

        if (not s.has(EFGDiagonal.default_name + '_evals_hsort')
                or force_recalc):
            EFGDiagonal.get(s)

        efg_evals = s.get_array(EFGDiagonal.default_name + '_evals_hsort')

        return _asymmetry(efg_evals)
Ejemplo n.º 3
0
    def extract(s, sel_i, sel_j, tag, isotopes, isotope_list, self_coupling,
                force_recalc):

        jDiagProp = JCDiagonal(sel_i=sel_i, sel_j=sel_j, isotopes=isotopes,
                               tag=tag, isotope_list=isotope_list,
                               self_coupling=self_coupling,
                               force_recalc=force_recalc)
        jc_dict = jDiagProp(s)
        jc_keys = jc_dict.keys()
        jc_evals = [jc_dict[ij]['evals'] for ij in jc_keys]
        jc_evals = _haeb_sort(jc_evals)
        jc_skew = _asymmetry(jc_evals)

        return dict(zip(jc_dict.keys(), jc_skew))
Ejemplo n.º 4
0
def nics_buildup(args=None):

    parser = ap.ArgumentParser()
    parser.add_argument('seedname', type=str, default=None)
    parser.add_argument('-R', type=float, default=10, help="Max radius")
    parser.add_argument('-minR', type=float, default=0, help="Min radius")
    parser.add_argument('-n', type=int, default=100, help="Number of points")
    parser.add_argument('-log',
                        action='store_true',
                        default=False,
                        help="Use a logarithmic grid")
    parser.add_argument('-cfile',
                        type=str,
                        default='current.dat',
                        help="Name of current file")
    parser.add_argument('-out',
                        type=str,
                        default=None,
                        help=("Prefix for output file names "
                              "(default is the seedname)"))
    parser.add_argument('-csv',
                        action='store_true',
                        default=False,
                        help="Output NICS tensors in CSV format")
    args = parser.parse_args()

    cfile = CurrentFile(args.cfile)
    cell = io.read(args.seedname + '.cell').get_cell()
    nfile = nicsfile(args.seedname + '.nicslist')

    try:
        fracpoints = np.dot(nfile.nics_points_frac, cell)
    except TypeError:
        fracpoints = None
    abspoints = nfile.nics_points_abs

    ncomp = NicsCompute(cfile, cell)

    allpoints = {'frac': fracpoints, 'abs': abspoints}

    outname = args.seedname if args.out is None else args.out

    outnics = open(outname + '_nics.txt', 'w')
    if (args.csv):
        outcsv = open(outname + '_nics.csv', 'w')
        csvwriter = csv.writer(outcsv)

    for ptype, plist in allpoints.items():
        if plist is None:
            continue

        for i, p in enumerate(plist):
            nics = ncomp.get_nics(p)
            rrange, nbuild = ncomp.get_nics_buildup(p,
                                                    Rmax=args.R,
                                                    n=args.n,
                                                    Rmin=args.minR,
                                                    is_log=args.log)

            # Print output
            if (args.csv):
                csvwriter.writerow([
                    i + 1,
                    np.trace(nics.nics) / 3.0,
                    np.trace(nics.nics_plus_chi) / 3.0
                ])

            outnics.write('Point {0}_{1}:\n'.format(ptype, i + 1))
            outnics.write('Coordinates: {0} {1} {2}\n'.format(*p))
            outnics.write('NICS isotropy: {0} ppm\n'.format(
                np.trace(nics.nics) / 3.0))
            outnics.write('NICS+chi isotropy: {0} ppm\n'.format(
                np.trace(nics.nics_plus_chi) / 3.0))
            outnics.write('NICS tensor:\n{0}\n'.format(nics.nics))
            outnics.write('NICS+chi tensor:\n{0}\n'.format(nics.nics_plus_chi))
            outnics.write('\n------\n')

            # For buildup, let's diagonalize them
            all_evals = np.array(
                [np.linalg.eigh((nb + nb.T) / 2.0)[0] for nb in nbuild])
            all_evals = _haeb_sort(all_evals)
            iso = np.average(all_evals, axis=1)
            aniso = _anisotropy(all_evals)
            asymm = _asymmetry(all_evals)
            np.savetxt(outname + '_{0}_{1}_nicsbuild.dat'.format(ptype, i + 1),
                       np.array([rrange, iso, aniso, asymm]).T)

    outnics.close()
    if (args.csv): outcsv.close()
Ejemplo n.º 5
0
 def asymmetry(self):
     if self._asymmetry is None:
         self._asymmetry = _asymmetry(self._haeb_evals[None, :])[0]
     return self._asymmetry