def setUp(self):
     settings.INPUT_DIRECTORY = 'test_audio'
     self.sounds = [
         sound_file.SoundFile('drums.wav'),
         sound_file.SoundFile('noise.wav')
     ]
     self.vamp_analyzer = sonic_annotator_analyzer.SonicAnnotatorAnalyzer(
         ['spectral_centroid'])
Ejemplo n.º 2
0
 def setUp(self):
     settings.INPUT_DIRECTORY = 'test_audio'
     self.sounds = [
         sound_file.SoundFile('drums.wav'),
         sound_file.SoundFile('noise.wav')
     ]
     self.csound_analyzer = csound_analyzer.CsoundAnalyzer(['csound_rms'])
     experiment.Experiment.folder_name = 'test'
Ejemplo n.º 3
0
 def setUp(self):
     settings.INPUT_DIRECTORY = 'test_audio'
     self.sounds = [
         sound_file.SoundFile('drums.wav'),
         sound_file.SoundFile('noise.wav')
     ]
     self.essentia_analyzer = essentia_analyzer.EssentiaAnalyzer(['spectral_centroid'])
     experiment.Experiment.folder_name = 'test'
Ejemplo n.º 4
0
 def setUp(self):
     settings.INPUT_DIRECTORY = 'test_audio'
     self.sounds = [
         sound_file.SoundFile('drums.wav'),
         sound_file.SoundFile('noise.wav'),
         sound_file.SoundFile('synth.wav')
     ]
     experiment.Experiment.load_experiment_settings('mfcc_basic.json')
     analyze.Analyzer.init_features_list()
     self.analyzer = analyze.Analyzer(project=None)
Ejemplo n.º 5
0
 def setUp(self):
     settings.INPUT_DIRECTORY = 'test_audio'
     self.num_sounds = 10
     self.drums = sound_file.SoundFile('drums.wav')
     self.files_to_delete = []
     self.template_file_path = os.path.join(settings.EFFECT_DIRECTORY, 'test_effect.csd.jinja2')
     with open(self.template_file_path, 'r') as template_file:
         self.template_string = template_file.read()
     experiment.Experiment.folder_name = 'test'
Ejemplo n.º 6
0
    def test_fitness(self):
        drums = sound_file.SoundFile('drums.wav')
        synth = sound_file.SoundFile('synth.wav')

        ind1 = individual.Individual(genotype=None,
                                     neural_mode=None,
                                     effect=None)
        ind1.set_output_sound(drums)
        ind2 = individual.Individual(genotype=None,
                                     neural_mode=None,
                                     effect=None)
        ind2.set_output_sound(synth)

        # make sure sound files are analyzed
        project.Project([ind1.output_sound, ind2.output_sound])

        # mock
        ind1.set_fitness = lambda x: None
        ind2.set_fitness = lambda x: None

        fitness_evaluator = fitness.LocalSimilarityFitness(target_sound=drums)
        fitness_evaluator.evaluate_multiple([ind1, ind2])
Ejemplo n.º 7
0
    def test_sound_file(self):
        my_sound_file = sound_file.SoundFile('drums.wav')
        self.assertAlmostEqual(my_sound_file.get_duration(), 7.89278911565)

        project.Project([my_sound_file])

        feature_vector_0 = my_sound_file.get_standardized_neural_input_vector(
            0)
        self.assertEqual(len(feature_vector_0),
                         len(experiment.Experiment.NEURAL_INPUT_CHANNELS))
        feature_vector_1 = my_sound_file.get_standardized_neural_input_vector(
            1)
        self.assertNotEqual(feature_vector_0, feature_vector_1)
Ejemplo n.º 8
0
    def test_sound_file(self):
        that_effect = effect.Effect('dist_lpf')
        target_sound = sound_file.SoundFile('drums.wav')
        input_sound = sound_file.SoundFile('noise.wav')

        sounds = [target_sound, input_sound]
        project.Project(sounds)

        num_frames = min(target_sound.get_num_frames(),
                         input_sound.get_num_frames())
        print('num_frames', num_frames)
        constant_parameter_vector = [0.5] * that_effect.num_parameters
        parameter_vectors = [
            copy.deepcopy(constant_parameter_vector) for _ in range(num_frames)
        ]

        self.start_time = time.time()

        cross_adapter = cross_adapt.CrossAdapter(input_sound=input_sound,
                                                 neural_input_vectors=[],
                                                 effect=that_effect)

        output_filename = 'test_cross_adapt.wav'

        process, output_sound_file, csd_path = cross_adapter.cross_adapt(
            parameter_vectors, that_effect, output_filename)

        self.files_to_delete.append(csd_path)

        print('process', process)
        print('output file', output_sound_file)
        print('csd path', csd_path)

        process.wait()

        print("Execution time: {0} seconds".format(time.time() -
                                                   self.start_time))
Ejemplo n.º 9
0
    def cross_adapt(self, parameter_vectors, effect, output_filename):
        vectors = copy.deepcopy(parameter_vectors)

        # map normalized values to the appropriate ranges of the effect parameters
        for i in range(effect.num_parameters):
            mapping = effect.parameters[i]['mapping']
            min_value = mapping['min_value']
            max_value = mapping['max_value']
            skew_factor = mapping['skew_factor']

            for parameter_vector in vectors:
                parameter_vector[
                    i] = standardizer.Standardizer.get_mapped_value(
                        normalized_value=parameter_vector[i],
                        min_value=min_value,
                        max_value=max_value,
                        skew_factor=skew_factor)

        channels = zip(*vectors)

        channels_csv = []
        for channel in channels:
            channel_csv = ','.join(map(str, channel))
            channels_csv.append(channel_csv)

        self.template.compile(parameter_names=effect.parameter_names,
                              parameter_channels=channels_csv,
                              ksmps=settings.HOP_SIZE,
                              duration=self.input_sound.get_duration(),
                              parameter_lpf_cutoff=self.parameter_lpf_cutoff)

        csd_path = os.path.join(settings.CSD_DIRECTORY,
                                experiment.Experiment.folder_name,
                                output_filename + '.csd')
        self.template.write_result(csd_path)
        csound = csound_handler.CsoundHandler(csd_path)
        output_file_path = os.path.join(settings.OUTPUT_DIRECTORY,
                                        experiment.Experiment.folder_name,
                                        output_filename)
        process = csound.run(input_file_path=self.input_sound.file_path,
                             output_file_path=output_file_path,
                             async=True)
        output_sound_file = sound_file.SoundFile(output_filename,
                                                 is_input=False)
        return process, output_sound_file, csd_path
Ejemplo n.º 10
0
        help='PRNG seed. Will be set to a random value if not specified.',
        type=int,
        required=False,
        default=42)
    arg_parser.add_argument(
        '--effect',
        dest='effect_name',
        type=str,
        help=
        'The name of the sound effect to use. See the effects folder for options.',
        required=False,
        default="dist_lpf")
    args = arg_parser.parse_args()

    input_sound = sound_file.SoundFile(args.input_file,
                                       is_input=True,
                                       verify_file=True)

    experiment_data = {
        'input_sound': input_sound.get_serialized_representation(),
        'args': vars(args)
    }
    experiment.Experiment.calculate_current_experiment_id(experiment_data)

    that_effect = effect.Effect(args.effect_name)
    cross_adapter = cross_adapt.CrossAdapter(input_sound=input_sound,
                                             neural_input_vectors=None,
                                             effect=that_effect,
                                             parameter_lpf_cutoff=10)

    parameter_vectors = []
Ejemplo n.º 11
0
    )
    arg_parser.add_argument(
        '--keep-csd',
        nargs='?',
        dest='keep_csd',
        help='Keep the csd file that was created to generate the extended sound',
        const=True,
        required=False,
        default=False
    )
    arg_parser.add_argument(
        '--seed',
        dest='seed',
        type=int,
        required=False,
        default=-1
    )
    args = arg_parser.parse_args()

    that_sound = sound_file.SoundFile(args.input, verify_file=True)
    that_output_file_path = DataAugmenter().augment(
        that_sound,
        factor=args.factor,
        pause_between=args.pause_between,
        seed=args.seed,
        keep_csd=args.keep_csd,
        playback_speed_std_dev=args.playback_speed_std_dev,
        gain_std_dev=args.gain_std_dev
    )
    print('Successfully created augmented sound: {}'.format(that_output_file_path))
Ejemplo n.º 12
0
        dest='input_files',
        nargs=3,
        type=str,
        help='The filenames of target sound, input sound and output sound respectively',
        required=True
    )
    arg_parser.add_argument(
        '--experiment-settings',
        dest='experiment_settings',
        type=str,
        help='Filename of json file in the experiment_settings folder. This file specifies which'
             ' features to use as neural input and for similarity calculations.',
        required=False,
        default="mfcc_basic.json"
    )
    args = arg_parser.parse_args()

    experiment.Experiment.load_experiment_settings(args.experiment_settings)
    analyze.Analyzer.init_features_list()

    target_sound = sound_file.SoundFile(args.input_files[0], is_input=True, verify_file=True)
    input_sound = sound_file.SoundFile(args.input_files[1], is_input=True, verify_file=True)
    output_sound = sound_file.SoundFile(args.input_files[2], is_input=False, verify_file=True)
    that_project = project.Project([target_sound, input_sound])
    analyzer = analyze.Analyzer(that_project)

    analyzer.analyze_multiple([output_sound])

    similarity_score = fitness.LocalSimilarityFitness.get_local_similarity(target_sound, output_sound)
    print(similarity_score)
Ejemplo n.º 13
0
    def __init__(self, args):
        self.args = args

        self.seed = random.randint(
            1, 999999) if self.args.seed == -1 else self.args.seed
        if self.args.seed == -1:
            print('Seed: {}'.format(self.seed))

        if len(self.args.input_files) != 2:
            raise Exception('Two filenames must be specified')

        self.target_sound = sound_file.SoundFile(self.args.input_files[0],
                                                 is_input=True,
                                                 verify_file=True)
        self.input_sound = sound_file.SoundFile(self.args.input_files[1],
                                                is_input=True,
                                                verify_file=True)
        if self.target_sound.num_samples != self.input_sound.num_samples:
            raise Exception(
                'The target sound and the input sound must have the same duration'
            )

        self.project = project.Project([self.target_sound, self.input_sound])
        self.analyzer = analyze.Analyzer(self.project)
        self.fitness_evaluator = None
        if self.args.fitness == 'similarity':
            self.fitness_evaluator = fitness.LocalSimilarityFitness(
                self.target_sound)
        elif self.args.fitness == 'multi-objective':
            self.fitness_evaluator = fitness.MultiObjectiveFitness(
                self.target_sound)
        elif self.args.fitness == 'hybrid':
            self.fitness_evaluator = fitness.HybridFitness(self.target_sound)
        elif self.args.fitness == 'novelty':
            self.fitness_evaluator = fitness.NoveltyFitness(self.target_sound)
        elif self.args.fitness == 'mixed':
            self.fitness_evaluator = fitness.MixedFitness(self.target_sound)

        self.similarity_evaluator = fitness.LocalSimilarityFitness(
            self.target_sound)

        self.num_frames = min(self.target_sound.get_num_frames(),
                              self.input_sound.get_num_frames())

        self.neural_input_vectors = []

        if self.args.neural_mode == 'a':
            for k in range(self.num_frames):
                vector = self.target_sound.get_standardized_neural_input_vector(
                    k)
                vector.append(1.0)  # bias input
                self.neural_input_vectors.append(vector)
        elif self.args.neural_mode == 'ab':
            for k in range(self.num_frames):
                vector = self.target_sound.get_standardized_neural_input_vector(
                    k)
                vector += self.input_sound.get_standardized_neural_input_vector(
                    k)
                vector.append(1.0)  # bias input
                self.neural_input_vectors.append(vector)
        elif self.args.neural_mode == 'b':
            for k in range(self.num_frames):
                vector = self.input_sound.get_standardized_neural_input_vector(
                    k)
                vector.append(1.0)  # bias input
                self.neural_input_vectors.append(vector)
        elif self.args.neural_mode == 's':
            self.args.add_neuron_probability = 0.0
            for k in range(self.num_frames):
                vector = [1.0]  # bias input
                self.neural_input_vectors.append(vector)
        elif self.args.neural_mode == 'targets':
            for k in range(self.num_frames):
                self.neural_input_vectors.append([1.0])  # just bias

        self.effect = effect.get_effect_instance(self.args.effect_names)

        self.cross_adapter_class = (cross_adapt.TargetCrossAdapter
                                    if self.args.neural_mode == 'targets' else
                                    cross_adapt.CrossAdapter)

        self.cross_adapter = self.cross_adapter_class(
            input_sound=self.input_sound,
            neural_input_vectors=self.neural_input_vectors,
            effect=self.effect,
            parameter_lpf_cutoff=experiment.Experiment.PARAMETER_LPF_CUTOFF)

        experiment_data = {
            'param_sound': self.target_sound.get_serialized_representation(),
            'input_sound': self.input_sound.get_serialized_representation(),
            'args': vars(self.args),
            'experiment_settings': experiment.Experiment.experiment_settings,
            'generations': [],
            'feature_statistics': self.project.data['feature_statistics'],
            'effect': self.effect.get_serialized_representation()
        }
        experiment.Experiment.calculate_current_experiment_id(experiment_data)

        experiment_data['seed'] = self.seed

        self.stats_logger = logger.Logger(os.path.join(
            settings.STATS_DATA_DIRECTORY, experiment.Experiment.folder_name,
            'stats.json'),
                                          suppress_initialization=True)
        self.stats_logger.data = experiment_data

        self.max_similarity = None
        self.last_fitness_improvement = 0  # generation number
        if self.args.keep_k_best > -1:
            self.best_individual_ids = set()

        self.individual_fitness = {}  # individual id => individual fitness
        self.individual_born = {
        }  # individual id => generation when it was first found

        self.population = None
        self.init_neat()

        run_start_time = time.time()
        self.run()
        print("Run execution time: {0:.2f} seconds".format(time.time() -
                                                           run_start_time))
        self.final_clean_up()