Ejemplo n.º 1
0
    def parse_object(specs,
                     valid_class_names: list,
                     class_name_ending: str,
                     class_path: str,
                     location: str,
                     key: str,
                     builder: bool = False,
                     return_params_dict: bool = False):

        class_name = ObjectParser.get_class_name(specs, valid_class_names,
                                                 class_name_ending, location,
                                                 key)
        ParameterValidator.assert_in_valid_list(class_name, valid_class_names,
                                                location, key)

        cls = ReflectionHandler.get_class_by_name(
            f"{class_name}{class_name_ending}", class_path)
        params = ObjectParser.get_all_params(specs, class_path, class_name,
                                             key)

        try:
            if "name" not in inspect.signature(cls.__init__).parameters.keys():
                del params["name"]
            obj = cls.build_object(
                **params) if builder and hasattr(cls, "build_object") else cls(
                    **params)
        except TypeError as err:
            raise AssertionError(
                f"{location}: invalid parameter {err.args[0]} when specifying parameters in {specs} "
                f"under key {key}. Valid parameter names are: "
                f"{[name for name in inspect.signature(cls.__init__).parameters.keys()]}"
            )

        return (obj, {class_name: params}) if return_params_dict else obj
Ejemplo n.º 2
0
    def parse(specs: dict, symbol_table: SymbolTable) -> dict:
        if "output" in specs:
            ParameterValidator.assert_keys(specs["output"], ["format"],
                                           "OutputParser", "output")
            ParameterValidator.assert_in_valid_list(specs["output"]["format"],
                                                    ["HTML"], "OutputParser",
                                                    "format")
        else:
            specs["output"] = {"format": "HTML"}
        symbol_table.add("output", SymbolType.OUTPUT, specs["output"])

        return specs["output"]
Ejemplo n.º 3
0
 def __init__(self, k: int, skip_first_n_aa: int, skip_last_n_aa: int, abundance: str, normalize_all_features: bool, name: str = None):
     location = "AtchleyKmerEncoder"
     ParameterValidator.assert_type_and_value(k, int, location, "k", 1)
     ParameterValidator.assert_type_and_value(skip_first_n_aa, int, location, "skip_first_n_aa", 0)
     ParameterValidator.assert_type_and_value(skip_last_n_aa, int, location, "skip_last_n_aa", 0)
     ParameterValidator.assert_in_valid_list(abundance.upper(), [ab.name for ab in RelativeAbundanceType], location, "abundance")
     ParameterValidator.assert_type_and_value(normalize_all_features, bool, location, "normalize_all_features")
     self.k = k
     self.skip_first_n_aa = skip_first_n_aa
     self.skip_last_n_aa = skip_last_n_aa
     self.abundance = RelativeAbundanceType[abundance.upper()]
     self.normalize_all_features = normalize_all_features
     self.name = name
     self.scaler_path = None
     self.vectorizer_path = None
Ejemplo n.º 4
0
    def _prepare_parameters(distance_metric: str,
                            attributes_to_match: list,
                            sequence_batch_size: int,
                            context: dict = None):
        valid_metrics = [metric.name for metric in DistanceMetricType]
        ParameterValidator.assert_in_valid_list(distance_metric, valid_metrics,
                                                "DistanceEncoder",
                                                "distance_metric")

        return {
            "distance_metric": DistanceMetricType[distance_metric.upper()],
            "attributes_to_match": attributes_to_match,
            "sequence_batch_size": sequence_batch_size,
            "context": context
        }
Ejemplo n.º 5
0
    def parse(self, key: str, instruction: dict, symbol_table: SymbolTable, path: str) -> MLApplicationInstruction:
        location = MLApplicationParser.__name__
        ParameterValidator.assert_keys(instruction.keys(), ['type', 'dataset', 'label', 'pool_size', 'config_path', 'store_encoded_data'], location, key)
        ParameterValidator.assert_in_valid_list(instruction['dataset'], symbol_table.get_keys_by_type(SymbolType.DATASET), location, f"{key}: dataset")
        ParameterValidator.assert_type_and_value(instruction['pool_size'], int, location, f"{key}: pool_size", min_inclusive=1)
        ParameterValidator.assert_type_and_value(instruction['label'], str, location, f'{key}: label')
        ParameterValidator.assert_type_and_value(instruction['config_path'], str, location, f'{key}: config_path')
        ParameterValidator.assert_type_and_value(instruction['store_encoded_data'], bool, location, f'{key}: store_encoded_data')

        hp_setting, label = self._parse_hp_setting(instruction, path, key)

        instruction = MLApplicationInstruction(dataset=symbol_table.get(instruction['dataset']), name=key, pool_size=instruction['pool_size'],
                                               label_configuration=LabelConfiguration([label]), hp_setting=hp_setting,
                                               store_encoded_data=instruction['store_encoded_data'])

        return instruction
Ejemplo n.º 6
0
    def parse_instruction(key: str, instruction: dict,
                          symbol_table: SymbolTable, path) -> tuple:
        ParameterValidator.assert_keys_present(list(instruction.keys()),
                                               ["type"],
                                               InstructionParser.__name__, key)
        valid_instructions = [
            cls[:-6]
            for cls in ReflectionHandler.discover_classes_by_partial_name(
                "Parser", "dsl/instruction_parsers/")
        ]
        ParameterValidator.assert_in_valid_list(instruction["type"],
                                                valid_instructions,
                                                "InstructionParser", "type")

        parser = ReflectionHandler.get_class_by_name(
            "{}Parser".format(instruction["type"]), "instruction_parsers/")()
        instruction_object = parser.parse(key, instruction, symbol_table, path)

        symbol_table.add(key, SymbolType.INSTRUCTION, instruction_object)
        return instruction, symbol_table
Ejemplo n.º 7
0
 def build_object(cls, **kwargs):
     location = cls.__name__
     ParameterValidator.assert_keys(
         kwargs.keys(), ["filter_sequence_type", "batch_size", "count_agg"],
         location, "DuplicateSequenceFilter")
     ParameterValidator.assert_in_valid_list(
         kwargs["filter_sequence_type"].upper(),
         [item.name for item in SequenceType], location,
         "filter_sequence_type")
     ParameterValidator.assert_in_valid_list(
         kwargs["count_agg"].upper(),
         [item.name
          for item in CountAggregationFunction], location, "count_agg")
     ParameterValidator.assert_type_and_value(kwargs["batch_size"], int,
                                              location, "batch_size", 1)
     return DuplicateSequenceFilter(
         filter_sequence_type=SequenceType[
             kwargs["filter_sequence_type"].upper()],
         batch_size=kwargs["batch_size"],
         count_agg=CountAggregationFunction[kwargs["count_agg"].upper()])
Ejemplo n.º 8
0
    def parse(self, key: str, instruction: dict, symbol_table: SymbolTable, path: str = None) -> SubsamplingInstruction:

        valid_keys = ["type", "dataset", "subsampled_dataset_sizes", "dataset_export_formats"]
        ParameterValidator.assert_keys(instruction.keys(), valid_keys, SubsamplingParser.__name__, key)

        dataset_keys = symbol_table.get_keys_by_type(SymbolType.DATASET)
        ParameterValidator.assert_in_valid_list(instruction['dataset'], dataset_keys, SubsamplingParser.__name__, f'{key}/dataset')

        dataset = symbol_table.get(instruction['dataset'])
        ParameterValidator.assert_type_and_value(instruction['subsampled_dataset_sizes'], list, SubsamplingParser.__name__, f'{key}/subsampled_dataset_sizes')
        ParameterValidator.assert_all_type_and_value(instruction['subsampled_dataset_sizes'], int, SubsamplingParser.__name__,
                                                     f'{key}/subsampled_dataset_sizes', 1, dataset.get_example_count())

        valid_export_formats = ReflectionHandler.all_nonabstract_subclass_basic_names(DataExporter, 'Exporter', "dataset_export/")
        ParameterValidator.assert_type_and_value(instruction['dataset_export_formats'], list, SubsamplingParser.__name__, f"{key}/dataset_export_formats")
        ParameterValidator.assert_all_in_valid_list(instruction['dataset_export_formats'], valid_export_formats, SubsamplingParser.__name__, f"{key}/dataset_export_formats")

        return SubsamplingInstruction(dataset=dataset, subsampled_dataset_sizes=instruction['subsampled_dataset_sizes'],
                                      dataset_export_formats=[ReflectionHandler.get_class_by_name(export_format + "Exporter", "dataset_export/")
                                                              for export_format in instruction['dataset_export_formats']], name=key)
Ejemplo n.º 9
0
    def _parse_dataset(key: str, dataset_specs: dict, symbol_table: SymbolTable, result_path: str) -> SymbolTable:
        location = "ImportParser"

        ParameterValidator.assert_keys(list(dataset_specs.keys()), ImportParser.valid_keys, location, f"datasets:{key}", False)

        valid_formats = ReflectionHandler.all_nonabstract_subclass_basic_names(DataImport, "Import", "IO/dataset_import/")
        ParameterValidator.assert_in_valid_list(dataset_specs["format"], valid_formats, location, "format")

        import_cls = ReflectionHandler.get_class_by_name("{}Import".format(dataset_specs["format"]))
        params = ImportParser._prepare_params(dataset_specs, result_path, key)


        if "is_repertoire" in params:
            ParameterValidator.assert_type_and_value(params["is_repertoire"], bool, location, "is_repertoire")

            if params["is_repertoire"] == True:
                if import_cls != IReceptorImport:
                    assert "metadata_file" in params, f"{location}: Missing parameter: metadata_file under {key}/params/"
                    ParameterValidator.assert_type_and_value(params["metadata_file"], str, location, "metadata_file")

            if params["is_repertoire"] == False:
                assert "paired" in params, f"{location}: Missing parameter: paired under {key}/params/"
                ParameterValidator.assert_type_and_value(params["paired"], bool, location, "paired")

                if params["paired"] == True:
                    assert "receptor_chains" in params, f"{location}: Missing parameter: receptor_chains under {key}/params/"
                    ParameterValidator.assert_in_valid_list(params["receptor_chains"], ["_".join(cp.value) for cp in ChainPair], location, "receptor_chains")

        try:
            dataset = import_cls.import_dataset(params, key)
            dataset.name = key
            symbol_table.add(key, SymbolType.DATASET, dataset)
        except KeyError as key_error:
            raise KeyError(f"{key_error}\n\nAn error occurred during parsing of dataset {key}. "
                           f"The keyword {key_error.args[0]} was missing. This either means this argument was "
                           f"not defined under definitions/datasets/{key}/params, or this column was missing from "
                           f"an input data file. ")
        except Exception as ex:
            raise Exception(f"{ex}\n\nAn error occurred while parsing the dataset {key}. See the log above for more details.")

        return symbol_table
Ejemplo n.º 10
0
    def add_label(self,
                  label: str,
                  values: list = None,
                  auxiliary_labels: list = None,
                  positive_class=None):

        vals = list(values) if values else None

        if label in self._labels and self._labels[label] is not None and len(
                self._labels[label]) > 0:
            warnings.warn(
                "Label " + label +
                " has already been set. Overriding existing values...",
                Warning)

        if positive_class is not None:
            ParameterValidator.assert_in_valid_list(positive_class, values,
                                                    Label.__name__,
                                                    'positive_class')

        self._labels[label] = Label(label, vals, auxiliary_labels,
                                    positive_class)
Ejemplo n.º 11
0
    def _get_implanting_strategy(key: str, signal: dict) -> SignalImplantingStrategy:

        valid_strategies = [cls[:-10] for cls in
                            ReflectionHandler.discover_classes_by_partial_name("Implanting", "simulation/signal_implanting_strategy/")]
        ParameterValidator.assert_in_valid_list(signal["implanting"], valid_strategies, "SignalParser", key)

        defaults = DefaultParamsLoader.load("signal_implanting_strategy/", f"{signal['implanting']}Implanting")
        signal = {**defaults, **signal}

        ParameterValidator.assert_keys_present(list(signal.keys()), ["motifs", "implanting", "sequence_position_weights"], SignalParser.__name__, key)

        implanting_comp = None
        if 'implanting_computation' in signal:
            implanting_comp = signal['implanting_computation'].lower()
            ParameterValidator.assert_in_valid_list(implanting_comp, [el.name.lower() for el in ImplantingComputation], SignalParser.__name__,
                                                    'implanting_computation')
            implanting_comp = ImplantingComputation[implanting_comp.upper()]

        implanting_strategy = ReflectionHandler.get_class_by_name(f"{signal['implanting']}Implanting")(GappedMotifImplanting(),
                                                                                                       signal["sequence_position_weights"],
                                                                                                       implanting_comp)

        return implanting_strategy
Ejemplo n.º 12
0
 def _prepare_parameters(vector_size: int,
                         k: int,
                         model_type: str,
                         name: str = None):
     location = "Word2VecEncoder"
     ParameterValidator.assert_type_and_value(vector_size,
                                              int,
                                              location,
                                              "vector_size",
                                              min_inclusive=1)
     ParameterValidator.assert_type_and_value(k,
                                              int,
                                              location,
                                              "k",
                                              min_inclusive=1)
     ParameterValidator.assert_in_valid_list(
         model_type.upper(), [item.name for item in ModelType], location,
         "model_type")
     return {
         "vector_size": vector_size,
         "k": k,
         "model_type": ModelType[model_type.upper()],
         "name": name
     }
Ejemplo n.º 13
0
    def build_object(cls, **kwargs):

        location = "FeatureValueDistplot"

        required_param = "grouping_label"
        assert required_param in kwargs, f"{location}: missing keyword argument '{required_param}' under {location}. Add missing names."

        ParameterValidator.assert_in_valid_list(
            kwargs["distribution_plot_type"],
            [item.name for item in DistributionPlotType], location,
            "distribution_plot_type")
        if "panel_layout_type" in kwargs:
            ParameterValidator.assert_in_valid_list(
                kwargs["panel_layout_type"],
                [item.name for item in PanelLayoutType], location,
                "panel_layout_type")
        if "panel_axis_scales_type" in kwargs:
            ParameterValidator.assert_in_valid_list(
                kwargs["panel_axis_scales_type"],
                [item.name for item in PanelAxisScalesType], location,
                "panel_axis_scales_type")
        if "panel_label_switch_type" in kwargs:
            ParameterValidator.assert_in_valid_list(
                kwargs["panel_label_switch_type"],
                [item.name for item in PanelLabelSwitchType], location,
                "panel_label_switch_type")

        if kwargs["distribution_plot_type"] in ("DENSITY", "RIDGE"):
            if "color_label" in kwargs and kwargs["color_label"] != kwargs[
                    "grouping_label"]:
                warnings.warn(
                    f"{location}: illegal color label '{kwargs['color_label']}' has been set to '{kwargs['grouping_label']}'."
                )
            kwargs["color_label"] = kwargs["grouping_label"]

        return FeatureValueDistplot(**kwargs)
Ejemplo n.º 14
0
    def _prepare_parameters(normalization_type: str,
                            reads: str,
                            sequence_encoding: str,
                            k: int = 0,
                            k_left: int = 0,
                            k_right: int = 0,
                            min_gap: int = 0,
                            max_gap: int = 0,
                            metadata_fields_to_include: list = None,
                            name: str = None,
                            scale_to_unit_variance: bool = False,
                            scale_to_zero_mean: bool = False):

        location = KmerFrequencyEncoder.__name__

        ParameterValidator.assert_in_valid_list(
            normalization_type.upper(),
            [item.name
             for item in NormalizationType], location, "normalization_type")
        ParameterValidator.assert_in_valid_list(
            reads.upper(), [item.name for item in ReadsType], location,
            "reads")
        ParameterValidator.assert_in_valid_list(
            sequence_encoding.upper(),
            [item.name
             for item in SequenceEncodingType], location, "sequence_encoding")
        ParameterValidator.assert_type_and_value(scale_to_zero_mean, bool,
                                                 location,
                                                 "scale_to_zero_mean")
        ParameterValidator.assert_type_and_value(scale_to_unit_variance, bool,
                                                 location,
                                                 "scale_to_unit_variance")

        vars_to_check = {
            "k": k,
            "k_left": k_left,
            "k_right": k_right,
            "min_gap": min_gap,
            "max_gap": max_gap
        }
        for param in vars_to_check.keys():
            ParameterValidator.assert_type_and_value(vars_to_check[param],
                                                     int,
                                                     location,
                                                     param,
                                                     min_inclusive=0)

        if "gap" in sequence_encoding.lower():
            assert k_left != 0 and k_right != 0, f"KmerFrequencyEncoder: sequence encoding {sequence_encoding} was chosen, but k_left " \
                                                 f"({k_left}) or k_right ({k_right}) have to be set and larger than 0."

        return {
            "normalization_type":
            NormalizationType[normalization_type.upper()],
            "reads": ReadsType[reads.upper()],
            "sequence_encoding":
            SequenceEncodingType[sequence_encoding.upper()],
            "name": name,
            "scale_to_zero_mean": scale_to_zero_mean,
            "scale_to_unit_variance": scale_to_unit_variance,
            **vars_to_check
        }