Ejemplo n.º 1
0
def get_colorinfo(r_name, clusters):
    Nsig = ((clusters.loc[r_name].end_t - clusters.loc[r_name].start_t) / 10 +
            1).sum()

    # if sufficiently many significant effects
    if Nsig >= 12:
        # set non-significant effects to NaN
        src_df_masked = ss.load_src_df(basefile, r_name, clusters,
                                       use_basefile)
    else:
        # there are not sufficiently many significant effects after FDR,
        # so don't mask
        src_df_masked = ss.load_src_df(basefile, r_name, None, use_basefile)

    if show_measure not in src_df_masked.columns:
        ss.add_measure(src_df_masked, show_measure)

    if Nsig >= 12:
        # make colormap based on distribution of significant effects
        colorinfo = {
            'fmin': src_df_masked[show_measure].abs().min(),
            'fmid': src_df_masked[show_measure].abs().median(),
            'fmax': src_df_masked[show_measure].abs().max(),
            'transparent': True,
            'colormap': 'auto'
        }
    else:
        # make colormap based on distribution of all effects
        colorinfo = {
            'fmin': src_df_masked[show_measure].abs().quantile(0.95),
            'fmid': src_df_masked[show_measure].abs().quantile(0.99),
            'fmax': src_df_masked[show_measure].abs().quantile(0.999),
            'transparent': True,
            'colormap': 'auto'
        }

    return colorinfo
Ejemplo n.º 2
0
    stes = stds / np.sqrt(betas.iloc[:, 0].count())

    tvals, pvals = scipy.stats.ttest_1samp(betas, 0, axis=0)

    return pd.Series(np.r_[betas.mean().values, stds, stes, tvals, pvals,
                           -np.log10(pvals)],
                     index=pd.MultiIndex.from_product(
                         [['mean', 'std', 'ste', 'tval', 'pval', 'mlog10p'],
                          row.index.levels[2]],
                         names=['measure', 'regressor']),
                     name=row.name)


sl = fl.apply(statfun, axis=1)

ss.add_measure(sl, 'mlog10p_fdr')

#%% define colors for plotting
r_colors = {
    'intercept': 'C0',
    'dot_x_time': 'C1',
    'dot_y_time': 'C2',
    'percupt_x_time': 'C3',
    'percupt_y_time': 'C4'
}
r_labels = {
    'percupt_y_time': 'PU-y',
    'percupt_x_time': 'PU-x',
    'dot_x_time': 'evidence',
    'dot_y_time': 'y-coord',
    'intercept': 'intercept'
Ejemplo n.º 3
0
    elif r_name == 'response':
        if response_aligned:
            x_times = [-30, 0, 30, 50]
        else:
            x_times = [780, 820, 890]

# load the selected regressors and mask as desired
src_df_masked = pd.concat(
    [ss.load_src_df(basefile, reg, mask, use_basefile) for reg in regressors],
    keys=regressors,
    names=['regressor', 'label', 'time'])

times = src_df_masked.index.levels[2]

if show_measure not in src_df_masked.columns:
    ss.add_measure(src_df_masked, show_measure)

if basefile.startswith('source_sequential'):
    # flip sign of all non-nan values in accev for which there is a nan value
    # in dot_x 100 ms later - these are the effects that are only present in
    # accumulated evidence, but not in dot_x
    fliptimes = times[times <= times[-1] - 100]
    accevvals = src_df_masked.loc[('accev', slice(None), fliptimes),
                                  show_measure]
    dotxvals = src_df_masked.loc[('dot_x', slice(None), fliptimes + 100),
                                 show_measure]
    flip = np.ones(dotxvals.size)
    flip[dotxvals.isnull().values] = -1
    print('number of flips = %d' % np.sum(flip < 0))
    # additionally flip all non-nan values for which the sign of the effect differs
    # note that the meaning of accev is such that its sign is flipped with respect
Ejemplo n.º 4
0
    ind = fl.index.get_level_values('label').map(
        lambda x: x.startswith(labels[-1]))

    evoked.append(fl[ind].groupby('time').mean())

evoked = pd.concat(evoked, keys=labels, names=['label', 'time'])

evoked_sl = pd.DataFrame(evoked.mean(axis=1))
evoked_sl.columns = ['mean']
evoked_sl['ste'] = evoked.std(axis=1) / pd.np.sqrt(evoked.shape[1])
evoked_sl['top'] = evoked_sl['mean'] + 2 * evoked_sl.ste
evoked_sl['bottom'] = evoked_sl['mean'] - 2 * evoked_sl.ste
tvals, pvals = ttest_1samp(evoked, 0, axis=1)
evoked_sl['tval'] = tvals
evoked_sl['mlog10p'] = -pd.np.log10(pvals)
ss.add_measure(evoked_sl, 'p_fdr')

print('largest absolute average t-values:')
print(evoked_sl.groupby('time').mean().abs().tval.sort_values().tail())

#%% plot time course
fig, ax = plt.subplots()

lr = dict(L='left', R='right')
sigy = dict(L=-0.025, R=-0.027)
cols = dict(L='C0', R='C1')

for label in labels:
    sl = evoked_sl.loc[label]

    ax.plot(sl.index, sl['mean'], label=lr[label[0]], color=cols[label[0]])
Ejemplo n.º 5
0
    # exclude time-outs, trial_time, intercept, response
    # trial normalisation of data, local normalisation of DM
    basefile = 'source_singledot_201808291410.h5'

show_measure = 'abstval'

fdr_alpha = 0.01


#%% determine statistically significant effects
sl = pd.read_hdf(os.path.join(
        helpers.resultsdir, basefile), 'second_level').loc[0]

winnames = sl.index.get_level_values('time').unique()

ss.add_measure(sl, 'mlog10p_fdr')

sig = sl[sl[('mlog10p_fdr', r_name)] > -np.log10(fdr_alpha)].xs(
        r_name, level='regressor', axis=1)

srcdf = sl.xs(r_name, level='regressor', axis=1).copy()
srcdf[srcdf['mlog10p_fdr'] < -np.log10(fdr_alpha)] = 0
if show_measure not in srcdf.columns:
    ss.add_measure(srcdf, show_measure)
    

#%% define some plotting functions
def get_colorinfo(srcdf, measure):
    srcdf = srcdf[(srcdf[measure] != 0) & srcdf[measure].notna()]
    
    return {'fmin': srcdf[measure].abs().min(),
Ejemplo n.º 6
0
make_figures = True

# vertices of pre-motor and motor areas, baseline (-0.3, 0), first 5 dots,
# trialregs_dot=0, source GLM, sum_dot_y, constregs=0 for 1st dot,
# subject-specific normalisation of DM without centering and scaling by std
# label_tc normalised across trials, times and subjects
basefile = 'source_sequential_201711271306.h5'

src_df = pd.concat([
    ss.load_src_df(basefile, r_name, use_basefile=True) for r_name in r_names
],
                   keys=r_names,
                   names=['regressor', 'label', 'time'])

# this performs FDR-correction across all regressors, vertices and times
ss.add_measure(src_df, 'p_fdr')


#%% prepare plotting
def get_colorinfo(measure, src_df, fdr_alpha=0.01):
    # find measure value that is the first one with p-value equal or smaller
    # than fdr_alpha
    pdiff = src_df.p_fdr - fdr_alpha
    try:
        fmid = src_df[pdiff <= 0].sort_values('p_fdr')[measure].abs().iloc[-1]
    except IndexError:
        print('No FDR-corrected significant effects!')
        if measure == 'tval':
            fmin = src_df[measure].abs().min()
            fmax = src_df[measure].abs().max()
            colorinfo = {
Ejemplo n.º 7
0
    for r_name in r_names
], r_names)

sl = second_level.loc[(labels, timeslice),
                      ([measure, 'mlog10p'], r_names)].stack('regressor')

# get rid of the data that I don't want to show and shouldn't influence
# multiple comparison correction
for r_name, label in labels.iteritems():
    other = set(r_names).difference(set([r_name])).pop()

    sl.loc[(label, slice(None), other), measure] = np.nan

sl.dropna(inplace=True)

ss.add_measure(sl, 'p_fdr')

#sl['significant'] = sl.p_fdr < 0.01
sl['significant'] = sl.mlog10p > -np.log10(0.01)

#%% plot example time courses for the brain area which has the largest overall
#   average effect
fig, axes = plt.subplots(1, 2, sharex=True, sharey=True, figsize=[7.5, 3])

rlabels = dict(dot_x='evidence', dot_y='y-coordinate')

for r_name, ax in zip(r_names, axes):
    label = labels[r_name]

    l, l1 = plot_single_source_signal(r_name, label, ax, t_slice=timeslice)
Ejemplo n.º 8
0
#%% save all significant r_name clusters to csv-file
def to_csv(areas, fname):
    areas['label'] = areas['label'].map(lambda x: x[:-7])
    areas.to_csv(fname)


to_csv(
    clusters.loc[r_name].copy().sort_values('start_t')[[
        'label', 'region', 'start_t', 'end_t', 'log10p'
    ]], os.path.join(figdir, 'significant_clusters_{}.csv'.format(r_name)))

#%%
src_df = ss.load_src_df(basefile, r_name, None, use_basefile)

if show_measure not in src_df.columns:
    ss.add_measure(src_df, show_measure)

labels = src_df.index.levels[0]


def get_average_effects(twin, wname, top=5):
    winclusters = clusters.loc[r_name]
    winclusters = winclusters[((winclusters.start_t >= twin[0])
                               & (winclusters.start_t <= twin[1]))
                              | ((winclusters.end_t >= twin[0])
                                 & (winclusters.end_t <= twin[1]))]
    areas = winclusters.label.unique()

    time = int(np.mean(twin))

    avsrcdf = pd.DataFrame(np.zeros((labels.size, src_df.shape[1])),