Ejemplo n.º 1
0
def test_annulus(answer_store, answer_dir):

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    r_in = 10.0
    r_out = 30.0

    ann_pos = AnnulusModel(ra0, dec0, r_in, r_out)

    ann_src = SimputPhotonList.from_models("ann", spec, ann_pos,
                                           exp_time, area, prng=prng)
    sim_cat = SimputCatalog.from_source("ann_simput.fits", ann_src,
                                        overwrite=True)

    instrument_simulator("ann_simput.fits", "ann_evt.fits", exp_time,
                         "lynx_hdxi", [ra0, dec0], ptsrc_bkgnd=False,
                         instr_bkgnd=False, foreground=False, prng=prng)

    write_radial_profile("ann_evt.fits", "ann_evt_profile.fits", [ra0, dec0],
                         1.1*r_in, 0.9*r_out, 100, ctr_type="celestial",
                         emin=0.5, emax=7.0, overwrite=True)

    file_answer_testing("EVENTS", "ann_evt.fits", answer_store, answer_dir)
    file_answer_testing("PROFILE", "ann_evt_profile.fits", answer_store, 
                        answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 2
0
def test_beta_model(answer_store, answer_dir):
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    prng = 32

    r_c = 20.0
    beta = 1.0

    exp_time = Quantity(500.0, "ks")

    beta_src_pos = BetaModel(ra0, dec0, r_c, beta)
    beta_src = SimputPhotonList.from_models("beta", spec, beta_src_pos,
                                            exp_time, area, prng=prng)
    sim_cat = SimputCatalog.from_source("beta_simput.fits", beta_src,
                                        overwrite=True)

    instrument_simulator("beta_simput.fits", "beta_evt.fits", exp_time,
                         "chandra_acisi_cy0", [ra0, dec0], ptsrc_bkgnd=False,
                         instr_bkgnd=False, foreground=False, prng=prng)

    write_radial_profile("beta_evt.fits", "beta_evt_profile.fits", [ra0, dec0],
                         0.0, 100.0, 200, ctr_type="celestial", emin=0.5,
                         emax=7.0, overwrite=True)

    file_answer_testing("EVENTS", "beta_evt.fits", answer_store, 
                        answer_dir)
    file_answer_testing("PROFILE", "beta_evt_profile.fits", answer_store,
                        answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 3
0
def test_point_source():
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    pt_src = SimputSpectrum.from_spectrum("pt_src", spec, ra0, dec0)
    cat = SimputCatalog.from_source("pt_src_simput.fits", pt_src, 
                                    overwrite=True)

    inst = get_instrument_from_registry("lynx_hdxi")
    inst["name"] = "hdxi_big_psf"
    inst["psf"] = ["gaussian", 5.0]

    add_instrument_to_registry(inst)

    instrument_simulator("pt_src_simput.fits", "pt_src_evt.fits", exp_time,
                         "hdxi_big_psf", [ra0, dec0], ptsrc_bkgnd=False, 
                         instr_bkgnd=False, foreground=False, prng=prng)

    psf_scale = inst["psf"][1]
    dtheta = inst["fov"]*60.0/inst["num_pixels"]

    f = pyfits.open("pt_src_evt.fits")
    x = f["EVENTS"].data["X"]
    y = f["EVENTS"].data["Y"]
    f.close()

    scalex = np.std(x)*sigma_to_fwhm*dtheta
    scaley = np.std(y)*sigma_to_fwhm*dtheta

    assert (scalex - psf_scale)/psf_scale < 0.03
    assert (scaley - psf_scale)/psf_scale < 0.03

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 4
0
def test_annulus(answer_store, answer_dir):

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    r_in = 10.0
    r_out = 30.0

    ann_pos = AnnulusModel(ra0, dec0, r_in, r_out)

    sim_cat = SimputCatalog.from_models("ann", "ann", spec, ann_pos,
                                        exp_time, area, prng=prng)
    sim_cat.write_catalog(overwrite=True)

    instrument_simulator("ann_simput.fits", "ann_evt.fits", exp_time,
                         "hdxi", [ra0, dec0], ptsrc_bkgnd=False, 
                         instr_bkgnd=False, foreground=False, prng=prng)

    write_radial_profile("ann_evt.fits", "ann_evt_profile.fits", [ra0, dec0],
                         1.1*r_in, 0.9*r_out, 100, ctr_type="celestial",
                         emin=0.5, emax=7.0, overwrite=True)

    file_answer_testing("EVENTS", "ann_evt.fits", answer_store, answer_dir)
    file_answer_testing("PROFILE", "ann_evt_profile.fits", answer_store, answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 5
0
def test_beta_model_flux(answer_store, answer_dir):
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    r_c = 20.0
    beta = 1.0

    prng = 34

    beta_src_pos = BetaModel(ra0, dec0, r_c, beta)
    sim_cat = SimputCatalog.from_models("beta", "beta", spec, beta_src_pos,
                                        exp_time, area, prng=prng)
    sim_cat.write_catalog(overwrite=True)

    instrument_simulator("beta_simput.fits", "beta_flux_evt.fits", exp_time,
                         "acisi_cy0", [ra0, dec0], ptsrc_bkgnd=False,
                         instr_bkgnd=False, foreground=False, 
                         roll_angle=37.0, prng=prng)

    wspec = spec.new_spec_from_band(0.5, 7.0)

    make_exposure_map("beta_flux_evt.fits", "beta_expmap.fits", wspec.emid.value,
                      weights=wspec.flux.value, overwrite=True)

    write_radial_profile("beta_flux_evt.fits", "beta_flux_evt_profile.fits",
                         [ra0, dec0], 0.0, 100.0, 200, ctr_type="celestial",
                         emin=0.5, emax=7.0, expmap_file="beta_expmap.fits",
                         overwrite=True)

    file_answer_testing("EVENTS", "beta_flux_evt.fits", answer_store, answer_dir)
    file_answer_testing("PROFILE", "beta_flux_evt_profile.fits", answer_store, answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 6
0
def test_thermal(answer_store, answer_dir):

    prng = RandomState(71)

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    spectrum_answer_testing(spec, "thermal_spec.h5", answer_store, answer_dir)

    pt_src_pos = PointSourceModel(30.0, 45.0)
    sim_cat = SimputCatalog.from_models("thermal_model", "thermal_model", spec,
                                        pt_src_pos, exp_time, area, prng=prng)
    sim_cat.write_catalog(overwrite=True)

    instrument_simulator("thermal_model_simput.fits", "thermal_model_evt.fits", exp_time, 
                         inst_name, [30.0, 45.0], ptsrc_bkgnd=False, foreground=False,
                         instr_bkgnd=False, prng=prng)

    write_spectrum("thermal_model_evt.fits", "thermal_model_evt.pha", overwrite=True)

    file_answer_testing("EVENTS", "thermal_model_evt.fits", answer_store, answer_dir)
    file_answer_testing("SPECTRUM", "thermal_model_evt.pha", answer_store, answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 7
0
def test_beta_model(answer_store, answer_dir):
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    prng = 32

    r_c = 20.0
    beta = 1.0

    exp_time = Quantity(500.0, "ks")

    beta_src_pos = BetaModel(ra0, dec0, r_c, beta)
    sim_cat = SimputCatalog.from_models("beta", "beta", spec, beta_src_pos,
                                        exp_time, area, prng=prng)
    sim_cat.write_catalog(overwrite=True)

    instrument_simulator("beta_simput.fits", "beta_evt.fits", exp_time,
                         "acisi_cy0", [ra0, dec0], ptsrc_bkgnd=False,
                         instr_bkgnd=False, foreground=False, prng=prng)

    write_radial_profile("beta_evt.fits", "beta_evt_profile.fits", [ra0, dec0],
                         0.0, 100.0, 200, ctr_type="celestial", emin=0.5,
                         emax=7.0, overwrite=True)

    file_answer_testing("EVENTS", "beta_evt.fits", answer_store, answer_dir)
    file_answer_testing("PROFILE", "beta_evt_profile.fits", answer_store, answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 8
0
def test_beta_model_flux(answer_store, answer_dir):
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    r_c = 20.0
    beta = 1.0

    prng = 34

    beta_src_pos = BetaModel(ra0, dec0, r_c, beta)
    sim_cat = SimputCatalog.from_models("beta",
                                        "beta",
                                        spec,
                                        beta_src_pos,
                                        exp_time,
                                        area,
                                        prng=prng)
    sim_cat.write_catalog(overwrite=True)

    instrument_simulator("beta_simput.fits",
                         "beta_flux_evt.fits",
                         exp_time,
                         "acisi_cy0", [ra0, dec0],
                         ptsrc_bkgnd=False,
                         instr_bkgnd=False,
                         foreground=False,
                         roll_angle=37.0,
                         prng=prng)

    wspec = spec.new_spec_from_band(0.5, 7.0)

    make_exposure_map("beta_flux_evt.fits",
                      "beta_expmap.fits",
                      wspec.emid.value,
                      weights=wspec.flux.value,
                      overwrite=True)

    write_radial_profile("beta_flux_evt.fits",
                         "beta_flux_evt_profile.fits", [ra0, dec0],
                         0.0,
                         100.0,
                         200,
                         ctr_type="celestial",
                         emin=0.5,
                         emax=7.0,
                         expmap_file="beta_expmap.fits",
                         overwrite=True)

    file_answer_testing("EVENTS", "beta_flux_evt.fits", answer_store,
                        answer_dir)
    file_answer_testing("PROFILE", "beta_flux_evt_profile.fits", answer_store,
                        answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 9
0
def plaw_fit(alpha_sim, answer_store, answer_dir):

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    nH_sim = 0.02
    norm_sim = 1.0e-4
    redshift = 0.01

    exp_time = (50.0, "ks")
    area = 40000.0
    inst_name = "new_hdxi"

    spec = Spectrum.from_powerlaw(alpha_sim, redshift, norm_sim, 0.1, 10.0,
                                  20000)
    spec.apply_foreground_absorption(nH_sim, model="tbabs")

    spectrum_answer_testing(spec, f"power_law_{alpha_sim}.h5", answer_store,
                            answer_dir)

    pt_src_pos = PointSourceModel(30.0, 45.0)
    pt_src = SimputPhotonList.from_models("plaw_model",
                                          spec,
                                          pt_src_pos,
                                          exp_time,
                                          area,
                                          prng=prng)
    cat = SimputCatalog.from_source("plaw_model_simput.fits",
                                    pt_src,
                                    overwrite=True)

    instrument_simulator("plaw_model_simput.fits",
                         f"plaw_model_{alpha_sim}_evt.fits",
                         exp_time,
                         inst_name, [30.0, 45.0],
                         instr_bkgnd=False,
                         ptsrc_bkgnd=False,
                         foreground=False,
                         prng=prng)

    write_spectrum(f"plaw_model_{alpha_sim}_evt.fits",
                   f"plaw_model_{alpha_sim}_evt.pha",
                   overwrite=True)

    file_answer_testing("EVENTS", f"plaw_model_{alpha_sim}_evt.fits",
                        answer_store, answer_dir)
    file_answer_testing("SPECTRUM", f"plaw_model_{alpha_sim}_evt.pha",
                        answer_store, answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 10
0
def test_emission_line(answer_store, answer_dir):
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    const_flux = 1.0e-4
    line_pos = 5.0
    line_width = 0.02
    line_amp = 1.0e-5

    exp_time = (100.0, "ks")
    area = 30000.0
    inst_name = "lynx_lxm"

    spec = Spectrum.from_constant(const_flux, 1.0, 10.0, 20000)
    spec.add_emission_line(line_pos, line_width, line_amp)

    spectrum_answer_testing(spec, "emission_line_test.h5", answer_store,
                            answer_dir)

    pt_src_pos = PointSourceModel(30.0, 45.0)
    sim_cat = SimputCatalog.from_models("emission_line",
                                        "emission_line",
                                        spec,
                                        pt_src_pos,
                                        exp_time,
                                        area,
                                        prng=prng)
    sim_cat.write_catalog(overwrite=True)

    instrument_simulator("emission_line_simput.fits",
                         "emission_line_evt.fits",
                         exp_time,
                         inst_name, [30.0, 45.0],
                         instr_bkgnd=False,
                         ptsrc_bkgnd=False,
                         foreground=False,
                         prng=prng)

    write_spectrum("emission_line_evt.fits",
                   "emission_line_evt.pha",
                   overwrite=True)

    file_answer_testing("EVENTS", "emission_line_evt.fits", answer_store,
                        answer_dir)
    file_answer_testing("SPECTRUM", "emission_line_evt.pha", answer_store,
                        answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 11
0
def test_thermal_nei(answer_store, answer_dir):

    prng = RandomState(71)

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    spectrum_answer_testing(spec_nei, "thermal_spec_nei.h5", answer_store,
                            answer_dir)

    pt_src_pos = PointSourceModel(30.0, 45.0)
    pt_src = SimputPhotonList.from_models("thermal_model_nei",
                                          spec_nei,
                                          pt_src_pos,
                                          exp_time,
                                          area,
                                          prng=prng)
    sim_cat = SimputCatalog.from_source("thermal_model_nei_simput.fits",
                                        pt_src,
                                        overwrite=True)

    instrument_simulator("thermal_model_nei_simput.fits",
                         "thermal_model_nei_evt.fits",
                         exp_time,
                         inst_name, [30.0, 45.0],
                         ptsrc_bkgnd=False,
                         foreground=False,
                         instr_bkgnd=False,
                         prng=prng)

    write_spectrum("thermal_model_nei_evt.fits",
                   "thermal_model_nei_evt.pha",
                   overwrite=True)

    file_answer_testing("EVENTS", "thermal_model_nei_evt.fits", answer_store,
                        answer_dir)
    file_answer_testing("SPECTRUM", "thermal_model_nei_evt.pha", answer_store,
                        answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 12
0
def plaw_fit(alpha_sim, answer_store, answer_dir):

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    nH_sim = 0.02
    norm_sim = 1.0e-4
    redshift = 0.01

    exp_time = (50.0, "ks")
    area = 40000.0
    inst_name = "new_hdxi"

    spec = Spectrum.from_powerlaw(alpha_sim, redshift, norm_sim, 0.1, 10.0, 20000)
    spec.apply_foreground_absorption(nH_sim, model="tbabs")

    spectrum_answer_testing(spec, "power_law_%s.h5" % alpha_sim, answer_store, 
                            answer_dir)

    pt_src_pos = PointSourceModel(30.0, 45.0)
    sim_cat = SimputCatalog.from_models("plaw_model", "plaw_model", spec, pt_src_pos,
                                        exp_time, area, prng=prng)
    sim_cat.write_catalog(overwrite=True)

    instrument_simulator("plaw_model_simput.fits", "plaw_model_%s_evt.fits" % alpha_sim,
                         exp_time, inst_name, [30.0, 45.0], instr_bkgnd=False,
                         ptsrc_bkgnd=False, foreground=False, prng=prng)

    write_spectrum("plaw_model_%s_evt.fits" % alpha_sim,
                   "plaw_model_%s_evt.pha" % alpha_sim,
                   overwrite=True)

    file_answer_testing("EVENTS", "plaw_model_%s_evt.fits" % alpha_sim,
                        answer_store, answer_dir)
    file_answer_testing("SPECTRUM", "plaw_model_%s_evt.pha" % alpha_sim,
                        answer_store, answer_dir)

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 13
0
def test_append():
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    exp_time = (50.0, "ks")
    area = (4.0, "m**2")

    ra0 = 30.0
    dec0 = 45.0

    spec = Spectrum.from_powerlaw(1.1, 0.05, 1.0e-4, 0.1, 10.0, 10000)

    pos1 = PointSourceModel(ra0+0.05, dec0+0.05)
    pos2 = PointSourceModel(ra0-0.05, dec0-0.05)

    pl1 = SimputPhotonList.from_models("pt_src1", spec, pos1, exp_time, area)
    pl2 = SimputPhotonList.from_models("pt_src2", spec, pos2, exp_time, area)
    sc = SimputCatalog.from_source("pt_src_simput.fits", pl1,
                                   src_filename="pt_src1_phlist.fits", 
                                   overwrite=True)

    sc.append(pl2, src_filename="pt_src2_phlist.fits",
              overwrite=True)

    assert os.path.exists("pt_src1_phlist.fits")
    assert os.path.exists("pt_src2_phlist.fits")
    assert os.path.exists("pt_src_simput.fits")

    f = pyfits.open("pt_src_simput.fits")
    cat = f["SRC_CAT"].data["SPECTRUM"]
    assert cat[0] == "pt_src1_phlist.fits[PHLIST,1]"
    assert cat[1] == "pt_src2_phlist.fits[PHLIST,1]"
    f.close()

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 14
0
def test_point_source():
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    pt_src_pos = PointSourceModel(ra0, dec0)
    sim_cat = SimputCatalog.from_models("pt_src", "pt_src", spec, pt_src_pos,
                                        exp_time, area, prng=prng)
    sim_cat.write_catalog(overwrite=True)

    inst = get_instrument_from_registry("hdxi")
    inst["name"] = "hdxi_big_psf"
    inst["psf"] = ["gaussian", 5.0]

    add_instrument_to_registry(inst)

    instrument_simulator("pt_src_simput.fits", "pt_src_evt.fits", exp_time,
                         "hdxi_big_psf", [ra0, dec0], ptsrc_bkgnd=False, 
                         instr_bkgnd=False, foreground=False, prng=prng)

    psf_scale = inst["psf"][1]
    dtheta = inst["fov"]*60.0/inst["num_pixels"]

    f = pyfits.open("pt_src_evt.fits")
    x = f["EVENTS"].data["X"]
    y = f["EVENTS"].data["Y"]
    f.close()

    scalex = np.std(x)*sigma_to_fwhm*dtheta
    scaley = np.std(y)*sigma_to_fwhm*dtheta

    assert (scalex - psf_scale)/psf_scale < 0.03
    assert (scaley - psf_scale)/psf_scale < 0.03

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 15
0
def make_point_sources_file(filename,
                            name,
                            exp_time,
                            fov,
                            sky_center,
                            absorb_model="wabs",
                            nH=0.05,
                            area=40000.0,
                            prng=None,
                            append=False,
                            overwrite=False,
                            src_filename=None,
                            input_sources=None,
                            output_sources=None):
    """
    Make a SIMPUT catalog made up of contributions from
    point sources. 

    Parameters
    ----------
    filename : string
        The filename for the SIMPUT catalog.
    name : string
        The name of the SIMPUT photon list.
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time of the observation in seconds.
    fov : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The field of view in arcminutes.
    sky_center : array-like
        The center RA, Dec of the field of view in degrees.
    absorb_model : string, optional
        The absorption model to use, "wabs" or "tbabs". Default: "wabs"
    nH : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The hydrogen column in units of 10**22 atoms/cm**2. 
        Default: 0.05
    area : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The effective area in cm**2. It must be large enough 
        so that a sufficiently large sample is drawn for the 
        ARF. Default: 40000.
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time.
    append : boolean, optional
        If True, the photon list source will be appended to an existing
        SIMPUT catalog. Default: False
    overwrite : boolean, optional
        Set to True to overwrite previous files. Default: False
    src_filename : string, optional
        If set, this will be the filename to write the source
        to. By default, the source will be written to the same
        file as the SIMPUT catalog.
    input_sources : string, optional
        If set to a filename, input the source positions, fluxes,
        and spectral indices from an ASCII table instead of generating
        them. Default: None
    output_sources : string, optional
        If set to a filename, output the properties of the sources
        within the field of view to a file. Default: None
    """
    events = make_ptsrc_background(exp_time,
                                   fov,
                                   sky_center,
                                   absorb_model=absorb_model,
                                   nH=nH,
                                   area=area,
                                   input_sources=input_sources,
                                   output_sources=output_sources,
                                   prng=prng)
    phlist = SimputPhotonList(events["ra"],
                              events["dec"],
                              events["energy"],
                              events["flux"],
                              name=name)
    if append:
        cat = SimputCatalog.from_file(filename)
        cat.append(phlist, src_filename=src_filename, overwrite=overwrite)
    else:
        cat = SimputCatalog.from_source(filename,
                                        phlist,
                                        src_filename=src_filename,
                                        overwrite=overwrite)
    return cat
Ejemplo n.º 16
0
def make_cosmological_sources_file(filename, name, exp_time, fov,
                                   sky_center, cat_center=None,
                                   absorb_model="wabs", nH=0.05, area=40000.0,
                                   overwrite=False, output_sources=None, 
                                   write_regions=None, src_filename=None,
                                   prng=None, append=False):
    r"""
    Make a SIMPUT catalog made up of contributions from
    galaxy clusters, galaxy groups, and galaxies.

    Parameters
    ----------
    filename : string
        The filename for the SIMPUT catalog.
    name : string
        The name of the SIMPUT photon list.
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time of the observation in seconds.
    fov : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The field of view in arcminutes.
    sky_center : array-like
        The center RA, Dec of the field of view in degrees.
    cat_center : array-like
        The center of the field in the coordinates of the
        halo catalog, which range from -5.0 to 5.0 degrees
        along both axes. If None is given, a center will be
        randomly chosen.
    absorb_model : string, optional
        The absorption model to use, "wabs" or "tbabs". Default: "wabs"
    nH : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The hydrogen column in units of 10**22 atoms/cm**2. 
        Default: 0.05
    area : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The effective area in cm**2. It must be large enough 
        so that a sufficiently large sample is drawn for the 
        ARF. Default: 40000.
    overwrite : boolean, optional
        Set to True to overwrite previous files. Default: False
    output_sources : string, optional
        If set to a filename, output the properties of the sources
        within the field of view to an ASCII file. Default: None
    write_regions : string, optional
        If set to a filename, output circle ds9 regions corresponding to the
        positions of the halos with radii corresponding to their R500 
        projected on the sky. Default: None
    src_filename : string, optional
        If set, this will be the filename to write the source
        to. By default, the source will be written to the same
        file as the SIMPUT catalog
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 
    append : boolean, optional
        If True, the photon list source will be appended to an existing
        SIMPUT catalog. Default: False
    """
    events = make_cosmological_sources(exp_time, fov, sky_center,
                                       cat_center=cat_center,
                                       absorb_model=absorb_model, nH=nH,
                                       area=area, output_sources=output_sources,
                                       write_regions=write_regions,prng=prng)
    phlist = SimputPhotonList(events["ra"], events["dec"], events["energy"],
                              events["flux"], name=name)
    if append:
        cat = SimputCatalog.from_file(filename)
        cat.append(phlist, src_filename=src_filename, overwrite=overwrite)
    else:
        cat = SimputCatalog.from_source(filename, phlist,
                                        src_filename=src_filename,
                                        overwrite=overwrite)
    return cat