Ejemplo n.º 1
0
def test_grad_search(Optimizer, model, crit):
    """check that the paths are the same in the line search"""
    n_outer = 2

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor1 = Monitor()
    algo = Forward()
    optimizer = Optimizer(n_outer=n_outer, tol=1e-16)
    grad_search(algo, criterion, model, optimizer, X, y, alpha0, monitor1)

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor2 = Monitor()
    algo = Implicit()
    optimizer = Optimizer(n_outer=n_outer, tol=1e-16)
    grad_search(algo, criterion, model, optimizer, X, y, alpha0, monitor2)

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor3 = Monitor()
    algo = ImplicitForward(tol_jac=1e-8, n_iter_jac=5000)
    optimizer = Optimizer(n_outer=n_outer, tol=1e-16)
    grad_search(algo, criterion, model, optimizer, X, y, alpha0, monitor3)

    np.testing.assert_allclose(np.array(monitor1.alphas),
                               np.array(monitor3.alphas))
    np.testing.assert_allclose(np.array(monitor1.grads),
                               np.array(monitor3.grads),
                               rtol=1e-5)
    np.testing.assert_allclose(np.array(monitor1.objs),
                               np.array(monitor3.objs))
    assert not np.allclose(np.array(monitor1.times), np.array(monitor3.times))
Ejemplo n.º 2
0
def test_cross_val_criterion(model_name, criterion):
    # verify dtype from criterion, and the good shape
    algo = Forward()
    monitor_get_val = Monitor()
    monitor_get_val_grad = Monitor()

    model = models[model_name]
    for log_alpha in dict_list_log_alphas[model_name]:
        criterion.get_val(model,
                          X,
                          y,
                          log_alpha,
                          tol=tol,
                          monitor=monitor_get_val)
        criterion.get_val_grad(model,
                               X,
                               y,
                               log_alpha,
                               algo.get_beta_jac_v,
                               tol=tol,
                               monitor=monitor_get_val_grad)

    obj_val = np.array(monitor_get_val.objs)
    obj_val_grad = np.array(monitor_get_val_grad.objs)

    np.testing.assert_allclose(obj_val, obj_val_grad)
Ejemplo n.º 3
0
def test_val_grad(model):
    criterion = HeldOutLogistic(idx_val, idx_val)
    algo = Forward()
    val_fwd, grad_fwd = criterion.get_val_grad(model,
                                               X,
                                               y,
                                               log_alpha,
                                               algo.get_beta_jac_v,
                                               tol=tol)

    criterion = HeldOutLogistic(idx_val, idx_val)
    algo = ImplicitForward(tol_jac=1e-8, n_iter_jac=5000)
    val_imp_fwd, grad_imp_fwd = criterion.get_val_grad(model,
                                                       X,
                                                       y,
                                                       log_alpha,
                                                       algo.get_beta_jac_v,
                                                       tol=tol)

    criterion = HeldOutLogistic(idx_val, idx_val)
    algo = Implicit()
    val_imp, grad_imp = criterion.get_val_grad(model,
                                               X,
                                               y,
                                               log_alpha,
                                               algo.get_beta_jac_v,
                                               tol=tol)

    assert np.allclose(val_fwd, val_imp_fwd, atol=1e-4)
    assert np.allclose(grad_fwd, grad_imp_fwd, atol=1e-4)
    assert np.allclose(val_imp_fwd, val_imp, atol=1e-4)

    # for the implcit the conjugate grad does not converge
    # hence the rtol=1e-2
    assert np.allclose(grad_imp_fwd, grad_imp, rtol=1e-2)
Ejemplo n.º 4
0
def test_grid_search():
    max_evals = 5

    monitor_grid = Monitor()
    model = Lasso(estimator=estimator)
    criterion = HeldOutMSE(idx_train, idx_train)
    algo = Forward()
    log_alpha_opt_grid, _ = grid_search(
        algo, criterion, model, X, y, log_alpha_min, log_alpha_max,
        monitor_grid, max_evals=max_evals,
        tol=1e-5, samp="grid")

    monitor_random = Monitor()
    criterion = HeldOutMSE(idx_train, idx_val)
    algo = Forward()
    log_alpha_opt_random, _ = grid_search(
        algo, criterion, model, X, y, log_alpha_min, log_alpha_max,
        monitor_random,
        max_evals=max_evals, tol=1e-5, samp="random")

    assert(monitor_random.log_alphas[
        np.argmin(monitor_random.objs)] == log_alpha_opt_random)
    assert(monitor_grid.log_alphas[
        np.argmin(monitor_grid.objs)] == log_alpha_opt_grid)

    monitor_grid = Monitor()
    model = Lasso(estimator=estimator)

    criterion = SmoothedSURE(sigma=sigma_star)
    algo = Forward()
    log_alpha_opt_grid, _ = grid_search(
        algo, criterion, model, X, y, log_alpha_min, log_alpha_max,
        monitor_grid, max_evals=max_evals,
        tol=1e-5, samp="grid")

    monitor_random = Monitor()
    criterion = SmoothedSURE(sigma=sigma_star)
    algo = Forward()
    log_alpha_opt_random, _ = grid_search(
        algo, criterion, model, X, y, log_alpha_min, log_alpha_max,
        monitor_random,
        max_evals=max_evals, tol=1e-5, samp="random")

    assert(monitor_random.log_alphas[
        np.argmin(monitor_random.objs)] == log_alpha_opt_random)
    assert(monitor_grid.log_alphas[
        np.argmin(monitor_grid.objs)] == log_alpha_opt_grid)
Ejemplo n.º 5
0
def test_grad_search(model, crit):
    """check that the paths are the same in the line search"""
    if crit == 'cv':
        n_outer = 2
        criterion = HeldOutMSE(idx_train, idx_val)
    else:
        n_outer = 2
        criterion = SmoothedSURE(sigma_star)
    # TODO MM@QBE if else scheme surprising

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor1 = Monitor()
    algo = Forward()
    grad_search(algo,
                criterion,
                model,
                X,
                y,
                log_alpha,
                monitor1,
                n_outer=n_outer,
                tol=1e-16)

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor2 = Monitor()
    algo = Implicit()
    grad_search(algo,
                criterion,
                model,
                X,
                y,
                log_alpha,
                monitor2,
                n_outer=n_outer,
                tol=1e-16)

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor3 = Monitor()
    algo = ImplicitForward(tol_jac=1e-8, n_iter_jac=5000)
    grad_search(algo,
                criterion,
                model,
                X,
                y,
                log_alpha,
                monitor3,
                n_outer=n_outer,
                tol=1e-16)

    np.testing.assert_allclose(np.array(monitor1.log_alphas),
                               np.array(monitor3.log_alphas))
    np.testing.assert_allclose(np.array(monitor1.grads),
                               np.array(monitor3.grads),
                               atol=1e-8)
    np.testing.assert_allclose(np.array(monitor1.objs),
                               np.array(monitor3.objs))
    assert not np.allclose(np.array(monitor1.times), np.array(monitor3.times))
Ejemplo n.º 6
0
def test_val_grad():
    #######################################################################
    # Not all methods computes the full Jacobian, but all
    # compute the gradients
    # check that the gradient returned by all methods are the same
    criterion = HeldOutMSE(idx_train, idx_val)
    algo = Forward()
    val_fwd, grad_fwd = criterion.get_val_grad(model,
                                               X,
                                               y,
                                               np.array(
                                                   [log_alpha1, log_alpha2]),
                                               algo.get_beta_jac_v,
                                               tol=tol)

    criterion = HeldOutMSE(idx_train, idx_val)
    algo = ImplicitForward(tol_jac=1e-16, n_iter_jac=5000)
    val_imp_fwd, grad_imp_fwd = criterion.get_val_grad(
        model,
        X,
        y,
        np.array([log_alpha1, log_alpha2]),
        algo.get_beta_jac_v,
        tol=tol)

    criterion = HeldOutMSE(idx_train, idx_val)
    algo = ImplicitForward(tol_jac=1e-16, n_iter_jac=5000)
    val_imp_fwd_custom, grad_imp_fwd_custom = criterion.get_val_grad(
        model,
        X,
        y,
        np.array([log_alpha1, log_alpha2]),
        algo.get_beta_jac_v,
        tol=tol)

    criterion = HeldOutMSE(idx_train, idx_val)
    algo = Implicit()
    val_imp, grad_imp = criterion.get_val_grad(model,
                                               X,
                                               y,
                                               np.array(
                                                   [log_alpha1, log_alpha2]),
                                               algo.get_beta_jac_v,
                                               tol=tol)
    np.testing.assert_allclose(val_fwd, val_imp_fwd)
    np.testing.assert_allclose(grad_fwd, grad_imp_fwd)
    np.testing.assert_allclose(val_imp_fwd, val_imp)
    np.testing.assert_allclose(val_imp_fwd, val_imp_fwd_custom)
    # for the implcit the conjugate grad does not converge
    # hence the rtol=1e-2
    np.testing.assert_allclose(grad_imp_fwd, grad_imp, atol=1e-3)
    np.testing.assert_allclose(grad_imp_fwd, grad_imp_fwd_custom)
Ejemplo n.º 7
0
def test_grad_search(model, crit):
    """check that the paths are the same in the line search"""
    n_outer = 2

    criterion = HeldOutLogistic(idx_val, idx_val)
    monitor1 = Monitor()
    algo = Forward()
    grad_search(algo,
                criterion,
                model,
                X,
                y,
                log_alpha,
                monitor1,
                n_outer=n_outer,
                tol=tol)

    criterion = HeldOutLogistic(idx_val, idx_val)
    monitor2 = Monitor()
    algo = Implicit()
    grad_search(algo,
                criterion,
                model,
                X,
                y,
                log_alpha,
                monitor2,
                n_outer=n_outer,
                tol=tol)

    criterion = HeldOutLogistic(idx_val, idx_val)
    monitor3 = Monitor()
    algo = ImplicitForward(tol_jac=tol, n_iter_jac=5000)
    grad_search(algo,
                criterion,
                model,
                X,
                y,
                log_alpha,
                monitor3,
                n_outer=n_outer,
                tol=tol)

    assert np.allclose(np.array(monitor1.log_alphas),
                       np.array(monitor3.log_alphas))
    assert np.allclose(np.array(monitor1.grads),
                       np.array(monitor3.grads),
                       atol=1e-4)
    assert np.allclose(np.array(monitor1.objs), np.array(monitor3.objs))
    assert not np.allclose(np.array(monitor1.times), np.array(monitor3.times))
Ejemplo n.º 8
0
def test_grad_search(model, crit):
    """check that the paths are the same in the line search"""
    if crit == 'MSE':
        n_outer = 2
        criterion = HeldOutMSE(idx_train, idx_val)
    else:
        n_outer = 2
        criterion = FiniteDiffMonteCarloSure(sigma_star)
    # TODO MM@QBE if else scheme surprising

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor1 = Monitor()
    algo = Forward()
    optimizer = LineSearch(n_outer=n_outer, tol=1e-16)
    grad_search(algo, criterion, model, optimizer, X, y, alpha0, monitor1)

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor2 = Monitor()
    algo = Implicit()
    optimizer = LineSearch(n_outer=n_outer, tol=1e-16)
    grad_search(algo, criterion, model, optimizer, X, y, alpha0, monitor2)

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor3 = Monitor()
    algo = ImplicitForward(tol_jac=1e-8, n_iter_jac=5000)
    optimizer = LineSearch(n_outer=n_outer, tol=1e-16)
    grad_search(algo, criterion, model, optimizer, X, y, alpha0, monitor3)

    np.testing.assert_allclose(np.array(monitor1.alphas),
                               np.array(monitor3.alphas))
    np.testing.assert_allclose(np.array(monitor1.grads),
                               np.array(monitor3.grads),
                               rtol=1e-5)
    np.testing.assert_allclose(np.array(monitor1.objs),
                               np.array(monitor3.objs))
    assert not np.allclose(np.array(monitor1.times), np.array(monitor3.times))
Ejemplo n.º 9
0
def parallel_function(dataset_name,
                      div_alpha,
                      method,
                      ind_rep,
                      random_state=10):
    maxit = dict_maxits[(dataset_name, div_alpha)][ind_rep]
    print("Dataset %s, algo %s, maxit %i" % (dataset_name, method, maxit))
    X, y = fetch_libsvm(dataset_name)
    n_samples = len(y)

    kf = KFold(n_splits=5, random_state=random_state, shuffle=True)

    for i in range(2):
        alpha_max = np.max(np.abs(X.T.dot(y))) / n_samples
        log_alpha = np.log(alpha_max / div_alpha)
        monitor = Monitor()
        if method == "celer":
            clf = Lasso_celer(
                alpha=np.exp(log_alpha),
                fit_intercept=False,
                # TODO maybe change this tol
                tol=1e-8,
                max_iter=maxit)
            model = Lasso(estimator=clf, max_iter=maxit)
            criterion = HeldOutMSE(None, None)
            cross_val = CrossVal(cv=kf, criterion=criterion)
            algo = ImplicitForward(tol_jac=1e-8,
                                   n_iter_jac=maxit,
                                   use_stop_crit=False)
            algo.max_iter = maxit
            val, grad = cross_val.get_val_grad(model,
                                               X,
                                               y,
                                               log_alpha,
                                               algo.get_beta_jac_v,
                                               tol=tol,
                                               monitor=monitor,
                                               max_iter=maxit)
        elif method == "ground_truth":
            for file in os.listdir("results/"):
                if file.startswith("hypergradient_%s_%i_%s" %
                                   (dataset_name, div_alpha, method)):
                    return
                else:
                    clf = Lasso_celer(alpha=np.exp(log_alpha),
                                      fit_intercept=False,
                                      warm_start=True,
                                      tol=1e-13,
                                      max_iter=10000)
                    criterion = HeldOutMSE(None, None)
                    cross_val = CrossVal(cv=kf, criterion=criterion)
                    algo = Implicit(criterion)
                    model = Lasso(estimator=clf, max_iter=10000)
                    val, grad = cross_val.get_val_grad(model,
                                                       X,
                                                       y,
                                                       log_alpha,
                                                       algo.get_beta_jac_v,
                                                       tol=1e-13,
                                                       monitor=monitor)
        else:
            model = Lasso(max_iter=maxit)
            criterion = HeldOutMSE(None, None)
            cross_val = CrossVal(cv=kf, criterion=criterion)
            if method == "forward":
                algo = Forward(use_stop_crit=False)
            elif method == "implicit_forward":
                algo = ImplicitForward(use_stop_crit=False,
                                       tol_jac=1e-8,
                                       n_iter_jac=maxit,
                                       max_iter=1000)
            elif method == "implicit":
                algo = Implicit(use_stop_crit=False, max_iter=1000)
            elif method == "backward":
                algo = Backward()
            else:
                1 / 0
            algo.max_iter = maxit
            algo.use_stop_crit = False
            val, grad = cross_val.get_val_grad(model,
                                               X,
                                               y,
                                               log_alpha,
                                               algo.get_beta_jac_v,
                                               tol=tol,
                                               monitor=monitor,
                                               max_iter=maxit)

    results = (dataset_name, div_alpha, method, maxit, val, grad,
               monitor.times[0])
    df = pandas.DataFrame(results).transpose()
    df.columns = [
        'dataset', 'div_alpha', 'method', 'maxit', 'val', 'grad', 'time'
    ]
    str_results = "results/hypergradient_%s_%i_%s_%i.pkl" % (
        dataset_name, div_alpha, method, maxit)
    df.to_pickle(str_results)
Ejemplo n.º 10
0
def parallel_function(dataset_name, method):
    X, y = fetch_libsvm(dataset_name)
    X, y = fetch_libsvm(dataset_name)
    if dataset_name == "real-sim":
        X = X[:, :2000]
    X = csr_matrix(X)  # very important for SVM
    my_bool = norm(X, axis=1) != 0
    X = X[my_bool, :]
    y = y[my_bool]
    logC = dict_logC[dataset_name]
    for max_iter in dict_max_iter[dataset_name]:
        print("Dataset %s, max iter %i" % (method, max_iter))
        for i in range(2):  # TODO change this
            sss1 = StratifiedShuffleSplit(n_splits=2,
                                          test_size=0.3333,
                                          random_state=0)
            idx_train, idx_val = sss1.split(X, y)
            idx_train = idx_train[0]
            idx_val = idx_val[0]

            monitor = Monitor()
            criterion = HeldOutSmoothedHinge(idx_train, idx_val)
            model = SVM(estimator=None, max_iter=10_000)

            if method == "ground_truth":
                for file in os.listdir("results_svm/"):
                    if file.startswith("hypergradient_svm_%s_%s" %
                                       (dataset_name, method)):
                        return
                clf = LinearSVC(C=np.exp(logC),
                                tol=1e-32,
                                max_iter=10_000,
                                loss='hinge',
                                permute=False)
                algo = Implicit(criterion)
                model.estimator = clf
                val, grad = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   logC,
                                                   algo.compute_beta_grad,
                                                   tol=1e-14,
                                                   monitor=monitor)
            else:
                if method == "sota":
                    clf = LinearSVC(C=np.exp(logC),
                                    loss='hinge',
                                    max_iter=max_iter,
                                    tol=1e-32,
                                    permute=False)
                    model.estimator = clf
                    algo = ImplicitForward(tol_jac=1e-32,
                                           n_iter_jac=max_iter,
                                           use_stop_crit=False)
                elif method == "forward":
                    algo = Forward(use_stop_crit=False)
                elif method == "implicit_forward":
                    algo = ImplicitForward(tol_jac=1e-8,
                                           n_iter_jac=max_iter,
                                           use_stop_crit=False)
                else:
                    raise NotImplementedError
                algo.max_iter = max_iter
                algo.use_stop_crit = False
                val, grad = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   logC,
                                                   algo.compute_beta_grad,
                                                   tol=tol,
                                                   monitor=monitor,
                                                   max_iter=max_iter)

        results = (dataset_name, method, max_iter, val, grad, monitor.times[0])
        df = pandas.DataFrame(results).transpose()
        df.columns = ['dataset', 'method', 'maxit', 'val', 'grad', 'time']
        str_results = "results_svm/hypergradient_svm_%s_%s_%i.pkl" % (
            dataset_name, method, max_iter)
        df.to_pickle(str_results)
Ejemplo n.º 11
0
def parallel_function(name_model, div_alpha):
    index_col = np.arange(10)
    alpha_max = (np.abs(X[np.ix_(idx_train, index_col)].T
                        @ y[idx_train])).max() / len(idx_train)
    if name_model == "lasso":
        log_alpha = np.log(alpha_max / div_alpha)
    elif name_model == "enet":
        alpha0 = alpha_max / div_alpha
        alpha1 = (1 - l1_ratio) * alpha0 / l1_ratio
        log_alpha = np.log(np.array([alpha0, alpha1]))

    criterion = HeldOutMSE(idx_train, idx_val)
    algo = Forward()
    monitor = Monitor()
    val, grad = criterion.get_val_grad(dict_models[name_model],
                                       X[:, index_col],
                                       y,
                                       log_alpha,
                                       algo.compute_beta_grad,
                                       tol=tol,
                                       monitor=monitor)

    criterion = HeldOutMSE(idx_train, idx_val)
    algo = Backward()
    monitor = Monitor()
    val, grad = criterion.get_val_grad(dict_models[name_model],
                                       X[:, index_col],
                                       y,
                                       log_alpha,
                                       algo.compute_beta_grad,
                                       tol=tol,
                                       monitor=monitor)

    val_cvxpy, grad_cvxpy = dict_cvxpy[name_model](X[:, index_col], y,
                                                   np.exp(log_alpha),
                                                   idx_train, idx_val)

    list_times_fwd = []
    list_times_bwd = []
    list_times_cvxpy = []
    for n_col in dict_ncols[div_alpha]:
        temp_fwd = []
        temp_bwd = []
        temp_cvxpy = []
        for i in range(repeat):

            rng = np.random.RandomState(i)
            index_col = rng.choice(n_features, n_col, replace=False)
            alpha_max = (np.abs(X[np.ix_(idx_train, index_col)].T
                                @ y[idx_train])).max() / len(idx_train)
            if name_model == "lasso":
                log_alpha = np.log(alpha_max / div_alpha)
            elif name_model == "enet":
                alpha0 = alpha_max / div_alpha
                alpha1 = (1 - l1_ratio) * alpha0 / l1_ratio
                log_alpha = np.log(np.array([alpha0, alpha1]))

            criterion = HeldOutMSE(idx_train, idx_val)
            algo = Forward()
            monitor = Monitor()
            val, grad = criterion.get_val_grad(dict_models[name_model],
                                               X[:, index_col],
                                               y,
                                               log_alpha,
                                               algo.compute_beta_grad,
                                               tol=tol,
                                               monitor=monitor)
            temp_fwd.append(monitor.times)

            criterion = HeldOutMSE(idx_train, idx_val)
            algo = Backward()
            monitor = Monitor()
            val, grad = criterion.get_val_grad(dict_models[name_model],
                                               X[:, index_col],
                                               y,
                                               log_alpha,
                                               algo.compute_beta_grad,
                                               tol=tol,
                                               monitor=monitor)
            temp_bwd.append(monitor.times)

            t0 = time.time()
            val_cvxpy, grad_cvxpy = dict_cvxpy[name_model](X[:, index_col], y,
                                                           np.exp(log_alpha),
                                                           idx_train, idx_val)
            temp_cvxpy.append(time.time() - t0)

            print(np.abs(grad - grad_cvxpy * np.exp(log_alpha)))
        list_times_fwd.append(np.mean(np.array(temp_fwd)))
        list_times_bwd.append(np.mean(np.array(temp_bwd)))
        list_times_cvxpy.append(np.mean(np.array(temp_cvxpy)))

    np.save("results/times_%s_forward_%s" % (name_model, div_alpha),
            list_times_fwd)
    np.save("results/times_%s_backward_%s" % (name_model, div_alpha),
            list_times_bwd)
    np.save("results/times_%s_cvxpy_%s" % (name_model, div_alpha),
            list_times_cvxpy)
    np.save("results/nfeatures_%s_%s" % (name_model, div_alpha),
            dict_ncols[div_alpha])
Ejemplo n.º 12
0
def test_grad_search():

    n_outer = 3
    criterion = HeldOutMSE(idx_train, idx_val)
    monitor1 = Monitor()
    algo = Forward()
    grad_search(algo,
                criterion,
                model,
                X,
                y,
                np.array([log_alpha1, log_alpha2]),
                monitor1,
                n_outer=n_outer,
                tol=1e-16)

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor2 = Monitor()
    algo = Implicit()
    grad_search(algo,
                criterion,
                model,
                X,
                y,
                np.array([log_alpha1, log_alpha2]),
                monitor2,
                n_outer=n_outer,
                tol=1e-16)

    criterion = HeldOutMSE(idx_train, idx_val)
    monitor3 = Monitor()
    algo = ImplicitForward(tol_jac=1e-3, n_iter_jac=1000)
    grad_search(algo,
                criterion,
                model,
                X,
                y,
                np.array([log_alpha1, log_alpha2]),
                monitor3,
                n_outer=n_outer,
                tol=1e-16)
    [np.linalg.norm(grad) for grad in monitor1.grads]
    [np.exp(alpha) for alpha in monitor1.log_alphas]

    np.testing.assert_allclose(np.array(monitor1.log_alphas),
                               np.array(monitor3.log_alphas))
    np.testing.assert_allclose(np.array(monitor1.grads),
                               np.array(monitor3.grads),
                               rtol=1e-6)
    np.testing.assert_allclose(np.array(monitor1.objs),
                               np.array(monitor3.objs),
                               rtol=1e-6)
    assert not np.allclose(np.array(monitor1.times), np.array(monitor3.times))

    np.testing.assert_allclose(np.array(monitor1.log_alphas),
                               np.array(monitor2.log_alphas),
                               atol=1e-2)
    np.testing.assert_allclose(np.array(monitor1.grads),
                               np.array(monitor2.grads),
                               atol=1e-2)
    np.testing.assert_allclose(np.array(monitor1.objs),
                               np.array(monitor2.objs),
                               atol=1e-2)
    assert not np.allclose(np.array(monitor1.times), np.array(monitor2.times))
Ejemplo n.º 13
0
def test_val_grad():
    #######################################################################
    # Not all methods computes the full Jacobian, but all
    # compute the gradients
    # check that the gradient returned by all methods are the same
    for key in models.keys():
        log_alpha = dict_log_alpha[key]
        model = models[key]

        criterion = HeldOutMSE(idx_train, idx_val)
        algo = Forward()
        val_fwd, grad_fwd = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   log_alpha,
                                                   algo.get_beta_jac_v,
                                                   tol=tol)

        criterion = HeldOutMSE(idx_train, idx_val)
        algo = ImplicitForward(tol_jac=1e-8, n_iter_jac=5000)
        val_imp_fwd, grad_imp_fwd = criterion.get_val_grad(model,
                                                           X,
                                                           y,
                                                           log_alpha,
                                                           algo.get_beta_jac_v,
                                                           tol=tol)

        criterion = HeldOutMSE(idx_train, idx_val)
        algo = Implicit()
        val_imp, grad_imp = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   log_alpha,
                                                   algo.get_beta_jac_v,
                                                   tol=tol)

        criterion = HeldOutMSE(idx_train, idx_val)
        algo = Backward()
        val_bwd, grad_bwd = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   log_alpha,
                                                   algo.get_beta_jac_v,
                                                   tol=tol)

        assert np.allclose(val_fwd, val_imp_fwd)
        assert np.allclose(grad_fwd, grad_imp_fwd)
        # assert np.allclose(val_imp_fwd, val_imp)
        assert np.allclose(val_bwd, val_fwd)
        assert np.allclose(val_bwd, val_imp_fwd)
        assert np.allclose(grad_fwd, grad_bwd)
        assert np.allclose(grad_bwd, grad_imp_fwd)

        # for the implcit the conjugate grad does not converge
        # hence the rtol=1e-2
        assert np.allclose(grad_imp_fwd, grad_imp, atol=1e-3)

    for key in models.keys():
        log_alpha = dict_log_alpha[key]
        model = models[key]
        criterion = SmoothedSURE(sigma_star)
        algo = Forward()
        val_fwd, grad_fwd = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   log_alpha,
                                                   algo.get_beta_jac_v,
                                                   tol=tol)

        criterion = SmoothedSURE(sigma_star)
        algo = ImplicitForward(tol_jac=1e-8, n_iter_jac=5000)
        val_imp_fwd, grad_imp_fwd = criterion.get_val_grad(model,
                                                           X,
                                                           y,
                                                           log_alpha,
                                                           algo.get_beta_jac_v,
                                                           tol=tol)

        criterion = SmoothedSURE(sigma_star)
        algo = Implicit(criterion)
        val_imp, grad_imp = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   log_alpha,
                                                   algo.get_beta_jac_v,
                                                   tol=tol)

        criterion = SmoothedSURE(sigma_star)
        algo = Backward()
        val_bwd, grad_bwd = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   log_alpha,
                                                   algo.get_beta_jac_v,
                                                   tol=tol)

        assert np.allclose(val_fwd, val_imp_fwd)
        assert np.allclose(grad_fwd, grad_imp_fwd)
        assert np.allclose(val_imp_fwd, val_imp)
        assert np.allclose(val_bwd, val_fwd)
        assert np.allclose(val_bwd, val_imp_fwd)
        assert np.allclose(grad_fwd, grad_bwd)
        assert np.allclose(grad_bwd, grad_imp_fwd)
Ejemplo n.º 14
0
alphas = alpha_max * p_alphas
log_alphas = np.log(alphas)

##############################################################################
# Grid-search
# -----------

print('scikit started')
t0 = time.time()

estimator = LogisticRegression(penalty='l1',
                               fit_intercept=False,
                               max_iter=max_iter)
model = SparseLogreg(max_iter=max_iter, estimator=estimator)
criterion = HeldOutLogistic(idx_train, idx_val)
algo_grid = Forward()
monitor_grid = Monitor()
grid_search(algo_grid,
            criterion,
            model,
            X,
            y,
            log_alpha_min,
            log_alpha_max,
            monitor_grid,
            log_alphas=log_alphas,
            tol=tol)
objs = np.array(monitor_grid.objs)

t_sk = time.time() - t0
Ejemplo n.º 15
0
def parallel_function(dataset_name, div_alpha, method):
    X, y = fetch_libsvm(dataset_name)
    n_samples = len(y)
    if dataset_name == "news20" and div_alpha == 100:
        rng = np.random.RandomState(42)
        y += rng.randn(n_samples) * 0.01
    for maxit in dict_maxits[(dataset_name, div_alpha)]:
        print("Dataset %s, maxit %i" % (method, maxit))
        for i in range(2):
            rng = np.random.RandomState(i)
            idx_train = rng.choice(n_samples, n_samples // 2, replace=False)
            idx = np.arange(0, n_samples)
            idx_val = idx[np.logical_not(np.isin(idx, idx_train))]
            alpha_max = np.max(np.abs(X[idx_train, :].T.dot(y[idx_train])))
            alpha_max /= len(idx_train)
            log_alpha = np.log(alpha_max / div_alpha)
            monitor = Monitor()
            if method == "celer":
                clf = Lasso_celer(alpha=np.exp(log_alpha),
                                  fit_intercept=False,
                                  tol=1e-12,
                                  max_iter=maxit)
                model = Lasso(estimator=clf, max_iter=maxit)
                criterion = HeldOutMSE(idx_train, idx_val)
                algo = ImplicitForward(tol_jac=1e-32,
                                       n_iter_jac=maxit,
                                       use_stop_crit=False)
                algo.max_iter = maxit
                val, grad = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   log_alpha,
                                                   algo.compute_beta_grad,
                                                   tol=1e-12,
                                                   monitor=monitor,
                                                   max_iter=maxit)
            elif method == "ground_truth":
                for file in os.listdir("results/"):
                    if file.startswith("hypergradient_%s_%i_%s" %
                                       (dataset_name, div_alpha, method)):
                        return
                clf = Lasso_celer(alpha=np.exp(log_alpha),
                                  fit_intercept=False,
                                  warm_start=True,
                                  tol=1e-14,
                                  max_iter=10000)
                criterion = HeldOutMSE(idx_train, idx_val)
                if dataset_name == "news20":
                    algo = ImplicitForward(tol_jac=1e-11, n_iter_jac=100000)
                else:
                    algo = Implicit(criterion)
                model = Lasso(estimator=clf, max_iter=10000)
                val, grad = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   log_alpha,
                                                   algo.compute_beta_grad,
                                                   tol=1e-14,
                                                   monitor=monitor)
            else:
                model = Lasso(max_iter=maxit)
                criterion = HeldOutMSE(idx_train, idx_val)
                if method == "forward":
                    algo = Forward(use_stop_crit=False)
                elif method == "implicit_forward":
                    algo = ImplicitForward(tol_jac=1e-8,
                                           n_iter_jac=maxit,
                                           use_stop_crit=False)
                elif method == "implicit":
                    algo = Implicit(max_iter=1000)
                elif method == "backward":
                    algo = Backward()
                else:
                    raise NotImplementedError
                algo.max_iter = maxit
                algo.use_stop_crit = False
                val, grad = criterion.get_val_grad(model,
                                                   X,
                                                   y,
                                                   log_alpha,
                                                   algo.compute_beta_grad,
                                                   tol=tol,
                                                   monitor=monitor,
                                                   max_iter=maxit)

        results = (dataset_name, div_alpha, method, maxit, val, grad,
                   monitor.times[0])
        df = pandas.DataFrame(results).transpose()
        df.columns = [
            'dataset', 'div_alpha', 'method', 'maxit', 'val', 'grad', 'time'
        ]
        str_results = "results/hypergradient_%s_%i_%s_%i.pkl" % (
            dataset_name, div_alpha, method, maxit)
        df.to_pickle(str_results)
Ejemplo n.º 16
0
                            n_iter_jac=maxit,
                            use_stop_crit=False)
     algo.max_iter = maxit
     val, grad = criterion.get_val_grad(model,
                                        X,
                                        y,
                                        log_alpha,
                                        algo.get_beta_jac_v,
                                        tol=1e-12,
                                        monitor=monitor,
                                        max_iter=maxit)
 else:
     model = Lasso(max_iter=maxit)
     criterion = HeldOutMSE(idx_train, idx_val)
     if method == "forward":
         algo = Forward()
     elif method == "implicit_forward":
         algo = ImplicitForward(tol_jac=1e-8,
                                n_iter_jac=maxit,
                                max_iter=1000)
     elif method == "implicit":
         algo = Implicit(max_iter=1000)
     elif method == "backward":
         algo = Backward()
     else:
         1 / 0
     algo.max_iter = maxit
     algo.use_stop_crit = False
     val, grad = criterion.get_val_grad(model,
                                        X,
                                        y,
Ejemplo n.º 17
0
from sparse_ho.algo.forward import get_beta_jac_iterdiff
from sparse_ho.algo.implicit_forward import get_beta_jac_fast_iterdiff
from sparse_ho.algo.implicit import get_beta_jac_t_v_implicit
from sparse_ho.criterion import (
    HeldOutMSE, FiniteDiffMonteCarloSure, HeldOutLogistic)

from sparse_ho.tests.common import (
    X, X_s, y, sigma_star, idx_train, idx_val,
    dict_log_alpha, models, custom_models, dict_cvxpy_func,
    dict_vals_cvxpy, dict_grads_cvxpy, dict_list_log_alphas, get_v,
    list_model_crit, list_model_names)

# list of algorithms to be tested
list_algos = [
    Forward(),
    ImplicitForward(tol_jac=1e-16, n_iter_jac=5000),
    Implicit()
    # Backward()  # XXX to fix
]

tol = 1e-15
X_r = X_s.tocsr()
X_c = X_s


@pytest.mark.parametrize('key', list(models.keys()))
def test_beta_jac(key):
    """Tests that algorithms computing the Jacobian return the same Jacobian"""
    if key == "svm" or key == "svr" or key == "ssvr":
        X_s = X_r