Ejemplo n.º 1
0
    def getAlu(self, x, x0, v0, th0, thd0):
        N = self.N
        gt = np.zeros((2, N))
        gt[0, :] = 0.15  # x is greaer than 0.15
        gt[1, :] = -1  #veclotu is gt -1m/s
        gt = gt.flatten()
        lt = np.zeros((2, N))
        lt[0, :] = 0.75  # x less than 0.75
        lt[1, :] = 1  # velocity less than 1m/s
        lt = lt.flatten()

        z = sparse.bsr_matrix((N, N))
        ineqA = sparse.bmat([[sparse.eye(N), z, z, z, z],
                             [z, sparse.eye(N), z, z, z]])  #.tocsc()
        #print(ineqA.shape)
        #print(ineqA)
        cons = self.constraint(forward.seed_sparse_gradient(x), x0, v0, th0,
                               thd0)
        A = sparse.vstack(map(lambda z: z.dvalue, cons))  #  y.dvalue.tocsc()
        #print(A.shape)
        totval = np.concatenate(tuple(map(lambda z: z.value, cons)))
        temp = A @ x - totval

        A = sparse.vstack((A, ineqA)).tocsc()

        #print(tuple(map(lambda z: z.value, cons)))
        #print(temp.shape)
        #print(lt.shape)
        #print(gt.shape)
        u = np.concatenate((temp, lt))
        l = np.concatenate((temp, gt))
        return A, l, u
Ejemplo n.º 2
0
    def getAlu(self, x, x0, v0, th0, thd0):
        N = self.N
        gt = np.zeros((2, N))
        gt[0, :] = -0.1  # 0.15 # x is greaer than 0.15
        gt[1, :] = -3  # -1 #veclotu is gt -1m/s
        # gt[4,:] = -10
        control_n = max(3, int(0.1 / self.dt))  # I dunno. 4 seems to help
        # print(control_n)

        gt[:, :control_n] = -100
        # gt[1,:2] = -100
        # gt[1,:2] = -15
        # gt[0,:3] = -10
        gt = gt.flatten()
        lt = np.zeros((2, N))
        lt[0, :] = 1  # 0.75 # x less than 0.75
        lt[1, :] = 3  # 1 # velocity less than 1m/s
        # lt[4,:] = 10
        lt[:, :control_n] = 100
        # lt[1,:2] = 100
        # lt[0,:3] = 10
        # lt[1,:2] = 15

        lt = lt.flatten()

        z = sparse.bsr_matrix((N, N))
        ineqA = sparse.bmat([[sparse.eye(N), z, z, z, z],
                             [z, sparse.eye(N), z, z, z]])  # .tocsc()
        # print(ineqA.shape)
        # print(ineqA)
        cons = self.constraint(forward.seed_sparse_gradient(x), x0, v0, th0,
                               thd0)
        A = sparse.vstack(map(lambda z: z.dvalue, cons))  # y.dvalue.tocsc()
        # print(A.shape)
        totval = np.concatenate(tuple(map(lambda z: z.value, cons)))
        temp = A @ x - totval

        A = sparse.vstack((A, ineqA)).tocsc()

        # print(tuple(map(lambda z: z.value, cons)))
        # print(temp.shape)
        # print(lt.shape)
        # print(gt.shape)
        u = np.concatenate((temp, lt))
        l = np.concatenate((temp, gt))
        return A, l, u
Ejemplo n.º 3
0
    dx_dot = (x_dot[0:-1] - x_dot[1:]) * dt1
    dtheta = (theta[0:-1] - theta[1:]) * dt1
    dtheta_dot = (theta_dot[0:-1] - theta_dot[1:]) * dt1
    f = a[1:]  #return v - f()
    t = -np.sin(avg_theta) + a[1:] * np.cos(avg_theta)

    x_res = dx - avg_x_dot
    x_dot_res = dx_dot - f
    theta_res = dtheta - avg_theta_dot
    theta_dot_res = dtheta_dot - t

    return x[0:1] - x0, x_dot[0:1] - x_dot0, theta[0:1] - theta0, theta_dot[
        0:1] - theta_dot0, x_res, x_dot_res, theta_res, theta_dot_res


cons = constraint(forward.seed_sparse_gradient(x), 0, 0, 0, 0)
A = sparse.vstack(map(lambda z: z.dvalue, cons)).tocsc()

totval = np.concatenate(tuple(map(lambda z: z.value, cons)))
temp = A @ x - totval
u = temp
l = temp

m = osqp.OSQP()
m.setup(P=P, q=q, A=A, l=l, u=u)
results = m.solve()
print(results.x)

plt.plot(results.x[:N], label="x")
plt.plot(results.x[N:2 * N], label="x_dot")
plt.plot(results.x[2 * N:3 * N], label="theta")
Ejemplo n.º 4
0
def check_sparsity(msg, f, x):
    df = f(forward.seed_sparse_gradient(x)**2).gradient
    sdf = f(forward.seed_sparsity(x)**2).sparsity
    assert sdf.shape
    assert_almost_equal((sdf.tocsr().multiply(df) - df).data, 0.)