Ejemplo n.º 1
0
def fft_cross_corr(a):
    M = a.shape[0]
    L = a.shape[1]
    cross_correlations = np.zeros((M**2, 2 * L - 1), dtype=np.complex128)
    for i in range(0, M):
        for j in range(0, M):
            cross_correlations[i * M + j, :] = sc.cross_correlate(a[i], a[j])
    return cross_correlations
Ejemplo n.º 2
0
def fft_cross_corr(a):
    M = a.shape[0]
    L = a.shape[1]
    cross_correlations = np.zeros((M ** 2, 2 * L - 1), dtype=np.complex128)
    for i in range(0, M):
        for j in range(0, M):
            cross_correlations[i * M + j, :] = sc.cross_correlate(a[i], a[j])
    return cross_correlations
Ejemplo n.º 3
0
 def test_cross_correlate(self):
     inp1 = np.linspace(1, 4, 4)
     inp2 = np.linspace(4, 7, 4)
     out = sc.cross_correlate(inp1, inp2, maxlag=2, unbiased=False)
     ref = np.array([20, 38, 60, 47, 32])
     np.testing.assert_array_almost_equal(out, ref)
Ejemplo n.º 4
0
 def test_cross_correlate(self):
     inp1 = np.linspace(1, 4, 4)
     inp2 = np.linspace(4, 7, 4)
     out = sc.cross_correlate(inp1, inp2, maxlag=2, unbiased=False)
     ref = np.array([20, 38, 60, 47, 32])
     np.testing.assert_array_almost_equal(out, ref)