Ejemplo n.º 1
0
def denoise(data, num=None, snr=None):
    """
    Denoises nd array with the format n x p x b

    Parameters:
    -----------
    data : nd array
        3-d numpy array with b = band
    num : int
        number of bands used
    snr : int
        threshold
    Returns
    -------
    denoised array with same shape as data
    """
    signal = spectral.calc_stats(data)
    noise = spectral.noise_from_diffs(data)
    mnfr = spectral.mnf(signal, noise)
    if num:
        denoised, trans = mnfr.denoise(data, num=num)
        print(50*'_')
        print(trans.shape)
    elif snr:
        denoised = mnfr.denoise(data, snr=snr)
        print("--------------")
        print(mnfr.num_with_snr(snr=snr))
    else:
        raise ValueError('"snr" or "num" must be given!')
    return denoised, trans
Ejemplo n.º 2
0
 def test_mnf_all_equals_data(self):
     '''Test that MNF transform with all components equals original data.'''
     data = self.data
     signal = spy.calc_stats(data)
     noise = spy.noise_from_diffs(data[117:137, 85:122, :])
     mnfr = spy.mnf(signal, noise)
     denoised = mnfr.denoise(data, num=data.shape[-1])
     assert_allclose(denoised, data)
Ejemplo n.º 3
0
 def test_mnf_all_equals_data(self):
     '''Test that MNF transform with all components equals original data.'''
     data = self.data
     signal = spy.calc_stats(data)
     noise = spy.noise_from_diffs(data[117: 137, 85: 122, :])
     mnfr = spy.mnf(signal, noise)
     denoised = mnfr.denoise(data, num=data.shape[-1])
     assert(np.allclose(denoised, data))
Ejemplo n.º 4
0
outstack = r"/home/jb/Downloads/stack_denoised5.tif"

with rasterio.open(instack) as intif:
    stack = intif.read()
    land = stack[7, :, :] > 500
    np.count_nonzero(land)
    out_meta = intif.meta.copy()
    (stack[:, land]) = 0
    t_stack = np.transpose(stack, (1, 2, 0))
help(spectral.calc_stats)
ss = stack.shape[0]
print(t_stack.shape)
# help(spectral.calc_stats)
#view =imshow(t_stack,(8,3,2))
signal = spectral.calc_stats(t_stack)
noise = spectral.noise_from_diffs(t_stack)
mnfr = spectral.mnf(signal, noise)
t_denoised = mnfr.denoise(t_stack, num=5)
t_reduced = mnfr.reduce(t_stack, num=5)
t_reduced.shape
t_denoised.shape
tt_denoised = np.transpose(t_denoised, (2, 0, 1))
tt_reduced = np.transpose(t_reduced, (2, 0, 1))
tt_stack = np.transpose(t_stack, (2, 0, 1))
tt_reduced.shape
out_meta['count'] = 13
tt_denoised.shape
tt_denoised.shape
np.max(tt_denoised[2:, ])
np.min(tt_denoised[1:, ])
view = spectral.imshow(t_denoised, (1, 3, 2))