Ejemplo n.º 1
0
def fetch_initial_statement():
    # generate_speech() is the function in the speech_generation module
    # recognize_speech() is the function in the speech_recognition module
    # first_classifier() is the function in the nlu_one module
    # second_classifier() is the function in the nlu_two module
    global state_initial, features_dict

    #generate_speech (" Hello. I'm your shoe shopping assistant. How can i help you", is_final = "False")
    generate_speech(features_dict, "initial", "True")

    while (state_initial == False):
        statement = recognize_speech()
        first_nlu_dict = first_classifier(statement, state="initial")

        if (first_nlu_dict["info_initial_response"] != "empty"):
            features_dict = first_nlu_dict

        if (features_dict["info_initial_response"] != "empty"):
            state_initial = True
        else:
            generate_speech(features_dict, "initial", first_nlu_dict)
Ejemplo n.º 2
0
def fetch_final_statement():
    # generate_speech() is the function in the speech_generation module
    # recognize_speech() is the function in the speech recognition module
    # first_classifier() is the function in the nlu_one module
    # second_classifier() is the function in the nlu_two module
    global state_color, state_category, state_cost, state_final, positive_response_list, features_dict

    generate_speech(features_dict, "final", "True")

    while (state_final == False):

        statement = recognize_speech()
        first_nlu_dict = first_classifier(statement, "final")

        if (first_nlu_dict["info_final_response"] == "yes"):
            features_dict["info_final_response"] = first_nlu_dict[
                "info_final_response"]
            state_final = True
        elif (first_nlu_dict["info_final_response"] == "no"):
            state_category = False
            state_color = False
            state_cost = False
            features_dict["info_color"] = "empty"
            features_dict["info_category"] = "empty"
            features_dict["info_cost"] = "empty"
            fetch_info_category()
            fetch_info_color()
            fetch_info_cost()
            generate_speech(features_dict, "final", "True")
        else:
            generate_speech(features_dict, "final", "True")
Ejemplo n.º 3
0
def fetch_info_cost():
    # generate_speech() is the function in the speech_generation module
    # recognize_speech() is the function in the speech recognition module
    # first_classifier() is the function in the nlu_one module
    # second_classifier() is the function in the nlu_two module
    global state_cost, cost_list, features_dict

    if (features_dict["info_cost"] != "empty"):
        state_cost = True
    else:
        generate_speech(features_dict, "cost", "True")

    while (state_cost == False):
        statement = recognize_speech()
        first_nlu_dict = first_classifier(statement, "cost")

        if (first_nlu_dict["info_cost"] != "empty"):
            features_dict["info_cost"] = first_nlu_dict["info_cost"]

        if (features_dict["info_cost"] != "empty"):
            state_cost = True
        else:
            generate_speech(features_dict, "cost", first_nlu_dict)
Ejemplo n.º 4
0
def fetch_results_from_db():
    global features_dict
    generate_speech(features_dict, "final", "empty")