Ejemplo n.º 1
0
 def end (self):
     """ clean up before exiting
     """
     if not self._aborted:
         print ("exit: application finished")
         # let the gfe clean up
         gfe.stop()
 def setup(self):
     sim.setup(model_binary_module=common, time_scale_factor=5)
     vertex_1 = SimpleTestVertex(12, fixed_sdram_value=20)
     vertex_1.splitter = SDRAMSplitter(SourceSegmentedSDRAMMachinePartition)
     sim.add_vertex_instance(vertex_1)
     sim.run(100)
     sim.stop()
Ejemplo n.º 3
0
    def run(self, mbs, x, y):

        # setup system
        sim.setup(model_binary_module=(
            speed_tracker_with_protocol_search_c_code_version))

        # build verts
        reader = SDRAMReaderAndTransmitterWithProtocol(mbs)
        reader.add_constraint(ChipAndCoreConstraint(x=x, y=y))
        receiver = PacketGathererWithProtocol()

        # add verts to graph
        sim.add_machine_vertex_instance(reader)
        sim.add_machine_vertex_instance(receiver)

        # build and add edge to graph
        sim.add_machine_edge_instance(MachineEdge(reader, receiver),
                                      "TRANSMIT")

        machine = sim.machine()
        if machine.is_chip_at(x, y):
            return self._do_run(reader, receiver, mbs)
        else:
            sim.stop()
            return None, False, False, "", 0
Ejemplo n.º 4
0
 def setup(self):
     sim.setup(model_binary_module=common)
     vertex_1 = SimpleTestVertex(10, fixed_sdram_value=20)
     vertex_1.splitter = SDRAMSplitterInternal(
         ConstantSDRAMMachinePartition)
     sim.add_vertex_instance(vertex_1)
     sim.run(100)
     sim.stop()
 def setup(self):
     sim.setup(model_binary_module=common)
     vertex_1 = SdramTestVertex(12, fixed_sdram_value=20)
     vertex_1.splitter = SDRAMSplitter(
         DestinationSegmentedSDRAMMachinePartition)
     sim.add_vertex_instance(vertex_1)
     sim.run(100)
     sim.stop()
    def end (self):
        """ clean up before exiting
        """
        # pause to allow debugging
        raw_input ('paused: press enter to exit')

        print "exit: application finished"
        # let the gfe clean up
        g.stop()
def test_rte_during_run_forever():
    s.setup(model_binary_folder=os.path.dirname(__file__))
    s.add_machine_vertex_instance(
        TestRunVertex("test_rte_during_run.aplx",
                      ExecutableType.USES_SIMULATION_INTERFACE))
    s.run(None)
    sleep(2.0)
    with pytest.raises(ExecutableFailedToStopException):
        s.stop()
Ejemplo n.º 8
0
def test_rte_during_run_forever():
    globals_variables.unset_simulator()
    s.setup(model_binary_folder=os.path.dirname(__file__))
    s.add_machine_vertex_instance(
        RunVertex("test_rte_during_run.aplx",
                  ExecutableType.USES_SIMULATION_INTERFACE))
    s.add_socket_address(None, "localhost", conn.local_port)
    s.run(None)
    conn.close()
    with pytest.raises(ExecutableFailedToStopException):
        s.stop()
 def setup(self):
     sim.setup(model_binary_module=common)
     vertex_1 = SdramTestVertex(12, fixed_sdram_value=20)
     vertex_1.splitter = BasicSDRAMSplitter()
     vertex_2 = SdramTestVertex(12, fixed_sdram_value=20)
     vertex_2.splitter = SDRAMSplitter(
         SourceSegmentedSDRAMMachinePartition, vertex_1.splitter)
     sim.add_vertex_instance(vertex_1)
     sim.add_vertex_instance(vertex_2)
     sim.add_application_edge_instance(
         ApplicationEdge(vertex_1, vertex_2), "sdram")
     sim.run(100)
     sim.stop()
Ejemplo n.º 10
0
    def test_hello_world(self):
        front_end.setup(n_chips_required=1,
                        model_binary_folder=os.path.dirname(__file__))

        # Put HelloWorldVertex onto 16 cores
        total_number_of_cores = 16
        for x in range(total_number_of_cores):
            front_end.add_machine_vertex_instance(
                HelloWorldVertex(n_hellos=10, label=f"Hello World at {x}"))

        front_end.run(10)
        front_end.run(10)

        front_end.stop()
 def setup(self):
     sim.setup(model_binary_module=common)
     vertex_1 = SdramTestVertex(2, fixed_sdram_value=20)
     vertex_1.splitter = SDRAMSplitterExternal(
         ConstantSDRAMMachinePartition)
     vertex_2 = SdramTestVertex(2, fixed_sdram_value=20)
     vertex_2.splitter = SDRAMSplitterExternal(
         ConstantSDRAMMachinePartition)
     sim.add_vertex_instance(vertex_1)
     sim.add_vertex_instance(vertex_2)
     sim.add_application_edge_instance(
         ApplicationEdge(vertex_1, vertex_2), "sdram")
     sim.run(100)
     sim.stop()
Ejemplo n.º 12
0
    def _do_run(reader, receiver, mbs):

        # run forever (to allow better speed testing)
        sim.run()

        # get placements for extraction
        placements = sim.placements()
        sim.transceiver().set_watch_dog(False)

        # set time outs using new interface (
        # clunky, but will be hidden in interface at later date)
        extra_monitor_vertices = sim.globals_variables. \
            get_simulator()._last_run_outputs['MemoryExtraMonitorVertices']

        try:
            print("starting data gathering")
            start = float(time.time())

            data, lost_seq_data = receiver.get_data(
                sim.transceiver(),
                placements.get_placement_of_vertex(reader),
                extra_monitor_vertices, placements)
            end = float(time.time())
            # end sim
            sim.stop()

            # check data is correct here
            ints = struct.unpack("<{}I".format(len(data) // 4), data)
            start_value = 0
            for value in ints:
                if value != start_value:
                    print("should be getting {}, but got {}".format(
                        start_value, value))
                    start_value = value + 1
                else:
                    start_value += 1

            # print data
            seconds = float(end - start)
            speed = (mbs * 8) / seconds
            print("Read {} MB in {} seconds ({} Mb/s)".format(
                mbs, seconds, speed))
            del data
            return speed, True, False, "", lost_seq_data

        except Exception as e:
            # if boomed. end so that we can get iobuf
            traceback.print_exc()
            sim.stop()
            return None, True, True, str(e), 0
def test_rte_during_run_forever():
    def start():
        sleep(3.0)
        s.stop_run()

    conn = DatabaseConnection(start, local_port=None)
    s.setup(model_binary_folder=os.path.dirname(__file__))
    s.add_machine_vertex_instance(
        RunVertex("test_rte_during_run.aplx",
                  ExecutableType.USES_SIMULATION_INTERFACE))
    s.add_socket_address(None, "localhost", conn.local_port)
    s.run(None)
    with pytest.raises(ExecutableFailedToStopException):
        s.stop()
    conn.close()
Ejemplo n.º 14
0
    def check_extra_monitor(self):
        mbs = _TRANSFER_SIZE_MEGABYTES

        # setup system
        globals_variables.unset_simulator()
        sim.setup(model_binary_folder=os.path.dirname(__file__),
                  n_chips_required=2)

        # build verts
        writer_vertex = SDRAMWriter(mbs)

        # add verts to graph
        sim.add_machine_vertex_instance(writer_vertex)
        sim.run(12)

        writer_placement = sim.placements().get_placement_of_vertex(
            writer_vertex)

        # pylint: disable=protected-access
        outputs = sim.globals_variables.get_simulator()._last_run_outputs
        monitor_vertices = outputs[_MONITOR_VERTICES]

        receiver_plt = _get_monitor_placement(monitor_vertices,
                                              writer_placement)
        gatherers, gatherer = _get_gatherer_for_monitor(writer_vertex)

        start = float(time.time())

        data = _do_transfer(gatherer, gatherers, monitor_vertices,
                            receiver_plt, writer_placement, writer_vertex)

        end = float(time.time())

        print(
            "time taken to extract {} MB is {}. Transfer rate: {} Mb/s".format(
                mbs, end - start, (mbs * 8) / (end - start)))

        check_data(data)

        sim.stop()
    def check_extra_monitor(self):
        mbs = _TRANSFER_SIZE_MEGABYTES

        # setup system
        sim.setup(model_binary_folder=os.path.dirname(__file__),
                  n_chips_required=2)

        # build verts
        writer_vertex = SDRAMWriter(mbs)

        # add verts to graph
        sim.add_machine_vertex_instance(writer_vertex)
        sim.run(12)

        writer_placement = sim.placements().get_placement_of_vertex(
            writer_vertex)

        # pylint: disable=protected-access
        monitor_vertices = sim.globals_variables.get_simulator().\
            _extra_monitor_to_chip_mapping

        receiver_plt = _get_monitor_placement(monitor_vertices,
                                              writer_placement)
        gatherers, gatherer = _get_gatherer_for_monitor(writer_vertex)

        start = float(time.time())

        data = _do_transfer(gatherer, gatherers, monitor_vertices,
                            receiver_plt, writer_placement, writer_vertex)

        end = float(time.time())

        print(f"time taken to extract {mbs} MB is {end - start}. "
              f"Transfer rate: {(mbs * 8) / (end - start)} Mb/s")

        check_data(data)

        sim.stop()
Ejemplo n.º 16
0
logger = logging.getLogger(__name__)

front_end.setup(
    n_chips_required=None, model_binary_folder=os.path.dirname(__file__))

'''
calculate total number of 'free' cores for the given board
(i.e. does not include those busy with SARK or reinjection)'''
total_number_of_cores = \
    front_end.get_number_of_available_cores_on_machine()

#param1: data
#param2: number of chips used
#param3: what columns to use
#param4: how many string columns exist?
#param5: function id
load_data_onto_vertices(raw_data, 1, [0], 1, 2)

front_end.run(10000)

placements = front_end.placements()
buffer_manager = front_end.buffer_manager()

#write_unique_ids_to_csv(getData,1,len(raw_data))
#display_linked_list_size()
#display_results_function_one()
#display_results_function_two()
display_results_function_three()
front_end.stop()
Ejemplo n.º 17
0
def run_broken():
    machine_time_step = 1000
    time_scale_factor = 1
    # machine_port = 11111
    machine_receive_port = 22222
    machine_host = "0.0.0.0"
    live_gatherer_label = "LiveHeatGatherer"
    notify_port = 19999
    database_listen_port = 19998

    # set up the front end and ask for the detected machines dimensions
    front_end.setup(
        graph_label="heat_demo_graph",
        model_binary_module=sys.modules[__name__],
        database_socket_addresses={SocketAddress(
            "127.0.0.1", notify_port, database_listen_port)})
    machine = front_end.machine()

    # create a live gatherer vertex for each board
    default_gatherer = None
    live_gatherers = dict()
    used_cores = set()
    for chip in machine.ethernet_connected_chips:

        # Try to use core 17 if one is available as it is outside the grid
        processor = chip.get_processor_with_id(17)
        if processor is None or processor.is_monitor:
            processor = chip.get_first_none_monitor_processor()
        if processor is not None:
            live_gatherer = front_end.add_machine_vertex(
                LivePacketGatherMachineVertex,
                {
                    'label': live_gatherer_label,
                    'ip_address': machine_host,
                    'port': machine_receive_port,
                    'payload_as_time_stamps': False,
                    'use_payload_prefix': False,
                    'strip_sdp': True,
                    'message_type': EIEIOType.KEY_PAYLOAD_32_BIT
                }
            )
            live_gatherers[chip.x, chip.y] = live_gatherer
            used_cores.add((chip.x, chip.y, processor.processor_id))
            if default_gatherer is None:
                default_gatherer = live_gatherer

    # Create a list of lists of vertices (x * 4) by (y * 4)
    # (for 16 cores on a chip - missing cores will have missing vertices)
    max_x_element_id = (machine.max_chip_x + 1) * 4
    max_y_element_id = (machine.max_chip_y + 1) * 4
    vertices = [
        [None for _ in range(max_y_element_id)]
        for _ in range(max_x_element_id)
    ]

    receive_labels = list()
    for x in range(0, max_x_element_id):
        for y in range(0, max_y_element_id):

            chip_x = x / 4
            chip_y = y / 4
            core_x = x % 4
            core_y = y % 4
            core_p = ((core_x * 4) + core_y) + 1

            # Add an element if the chip and core exists
            chip = machine.get_chip_at(chip_x, chip_y)
            if chip is not None:
                core = chip.get_processor_with_id(core_p)
                if (core is not None and not core.is_monitor and
                        (chip_x, chip_y, core_p) not in used_cores):
                    element = front_end.add_machine_vertex(
                        HeatDemoVertex,
                        {
                            'machine_time_step': machine_time_step,
                            'time_scale_factor': time_scale_factor
                        },
                        label="Heat Element {}, {}".format(
                            x, y))
                    vertices[x][y] = element
                    vertices[x][y].add_constraint(
                        ChipAndCoreConstraint(chip_x, chip_y, core_p))

                    # add a link from the heat element to the live packet
                    # gatherer
                    live_gatherer = live_gatherers.get(
                        (chip.nearest_ethernet_x, chip.nearest_ethernet_y),
                        default_gatherer)
                    front_end.add_machine_edge(
                        MachineEdge,
                        {
                            'pre_vertex': vertices[x][y],
                            'post_vertex': live_gatherer
                        },
                        label="Live output from {}, {}".format(x, y),
                        semantic_label="TRANSMISSION")
                    receive_labels.append(vertices[x][y].label)

    # build edges
    for x in range(0, max_x_element_id):
        for y in range(0, max_y_element_id):

            if vertices[x][y] is not None:

                # Add a north link if not at the top
                if y+1 < max_y_element_id and vertices[x][y+1] is not None:
                    front_end.add_machine_edge(
                        HeatDemoEdge,
                        {
                            'pre_vertex': vertices[x][y],
                            'post_vertex': vertices[x][y + 1],
                            'direction': HeatDemoEdge.DIRECTIONS.SOUTH
                        },
                        label="North Edge from {}, {} to {}, {}".format(
                            x, y, x + 1, y),
                        semantic_label="TRANSMISSION")

                # Add an east link if not at the right
                if x+1 < max_y_element_id and vertices[x+1][y] is not None:
                    front_end.add_machine_edge(
                        HeatDemoEdge,
                        {
                            'pre_vertex': vertices[x][y],
                            'post_vertex': vertices[x + 1][y],
                            'direction': HeatDemoEdge.DIRECTIONS.WEST
                        },
                        label="East Edge from {}, {} to {}, {}".format(
                            x, y, x + 1, y),
                        semantic_label="TRANSMISSION")

                # Add a south link if not at the bottom
                if (y - 1) >= 0 and vertices[x][y - 1] is not None:
                    front_end.add_machine_edge(
                        HeatDemoEdge,
                        {
                            'pre_vertex': vertices[x][y],
                            'post_vertex': vertices[x][y - 1],
                            'direction': HeatDemoEdge.DIRECTIONS.NORTH
                        },
                        label="South Edge from {}, {} to {}, {}".format(
                            x, y, x, y - 1),
                        semantic_label="TRANSMISSION")

                # check for the likely hood for a W link
                if (x - 1) >= 0 and vertices[x - 1][y] is not None:
                    front_end.add_machine_edge(
                        HeatDemoEdge,
                        {
                            'pre_vertex': vertices[x][y],
                            'post_vertex': vertices[x - 1][y],
                            'direction': HeatDemoEdge.DIRECTIONS.EAST
                        },
                        label="West Edge from {}, {} to {}, {}".format(
                            x, y, x - 1, y),
                        semantic_label="TRANSMISSION")

    # Set up the live connection for receiving heat elements
    live_heat_connection = LiveEventConnection(
        live_gatherer_label, receive_labels=receive_labels,
        local_port=notify_port, machine_vertices=True)
    heat_values = defaultdict(list)
    condition = Condition()

    def receive_heat(label, atom, value):
        with condition:
            print "{}: {}".format(label, value / 65536.0)

    # Set up callbacks to occur when spikes are received
    for label in receive_labels:
        live_heat_connection.add_receive_callback(label, receive_heat)

    front_end.run(1000)
    front_end.stop()

    for label in receive_labels:
        print "{}: {}".format(
            label, ["{:05.2f}".format(value) for value in heat_values[label]])
def run_model(data, n_chips=None, n_ihcan=0, fs=44100, resample_factor=1):

    # Set up the simulation
    g.setup(n_chips_required=n_chips, model_binary_module=model_binaries)

    # Get the number of cores available for use
    n_cores = 0
    machine = g.machine()

    # Create a OME for each chip
    boards = dict()

    #changed to lists to ensure data is read back in the same order that verticies are instantiated
    ihcans = list()

    cf_index = 0
    count = 0
    for chip in machine.chips:
        if count >= n_chips:
            break
        else:
            boards[chip.x, chip.y] = chip.ip_address

            for j in range(n_ihcan):
                ihcan = IHCANVertex(data[j][:], fs, resample_factor)
                g.add_machine_vertex_instance(ihcan)
                # constrain placement to local chip
                ihcan.add_constraint(ChipAndCoreConstraint(chip.x, chip.y))
                #ihcans[chip.x, chip.y,j] = ihcan
                ihcans.append(ihcan)

            count = count + 1

# Run the simulation
    g.run(None)

    # Wait for the application to finish
    txrx = g.transceiver()
    app_id = globals_variables.get_simulator()._app_id
    #logger.info("Running {} worker cores".format(n_workers))
    logger.info("Waiting for application to finish...")
    running = txrx.get_core_state_count(app_id, CPUState.RUNNING)
    while running > 0:
        time.sleep(0.5)
        error = txrx.get_core_state_count(app_id, CPUState.RUN_TIME_EXCEPTION)
        watchdog = txrx.get_core_state_count(app_id, CPUState.WATCHDOG)
        if error > 0 or watchdog > 0:
            error_msg = "Some cores have failed ({} RTE, {} WDOG)".format(
                error, watchdog)
            raise Exception(error_msg)
        running = txrx.get_core_state_count(app_id, CPUState.RUNNING)

    # Get the data back
    samples = list()
    progress = ProgressBar(len(ihcans), "Reading results")

    for ihcan in ihcans:
        samples.append(ihcan.read_samples(g.buffer_manager()))
        progress.update()
    progress.end()
    samples = numpy.hstack(samples)

    # Close the machine
    g.stop()

    print "channels running: ", len(ihcans) / 5.0
    print "output data: {} fibres with length {}".format(
        len(ihcans) * 2, len(samples))
    #if(len(samples) != len(ihcans)*2*numpy.floor(len(data[0][0])/100)*100*(1.0/resample_factor)):
    if (len(samples) !=
            len(ihcans) * 2 * numpy.floor(len(data[0][0]) / 96) * 96):
        #print "samples length {} isn't expected size {}".format(len(samples),len(ihcans)*2*numpy.floor(len(data[0][0])/100)*100*(1.0/resample_factor))
        print "samples length {} isn't expected size {}".format(
            len(samples),
            len(ihcans) * 2 * numpy.floor(len(data[0][0]) / 96) * 96)

    return samples
Ejemplo n.º 19
0
def run_mcmc(model,
             data,
             n_samples,
             burn_in=2000,
             thinning=5,
             degrees_of_freedom=3.0,
             seed=None,
             n_chips=None,
             n_boards=None):
    """ Executes an MCMC model, returning the received samples

    :param model: The MCMCModel to be used
    :param data: The data to sample
    :param n_samples: The number of samples to generate
    :param burn_in:\
        no of MCMC transitions to reach apparent equilibrium before\
        generating inference samples
    :param thinning:\
        sampling rate i.e. 5 = 1 sample for 5 generated steps
    :param degrees_of_freedom:\
        The number of degrees of freedom to jump around with
    :param seed: The random seed to use
    :param n_chips: The number of chips to run the model on
    :param root_finder: Use the root finder by adding root finder vertices
    :param cholesky: Use the Cholesky algorithm by adding Cholesky vertices

    :return: The samples read
    :rtype: A numpy array with fields for each model state variable
    """

    # Set up the simulation
    g.setup(n_boards_required=n_boards,
            n_chips_required=n_chips,
            model_binary_module=model_binaries)

    # Get the number of cores available for use
    n_cores = 0
    machine = g.machine()

    # Create a coordinator for each board
    coordinators = dict()
    boards = dict()
    for chip in machine.ethernet_connected_chips:

        # Create a coordinator
        coordinator = MCMCCoordinatorVertex(model, data, n_samples, burn_in,
                                            thinning, degrees_of_freedom, seed)
        g.add_machine_vertex_instance(coordinator)

        # Put the coordinator on the Ethernet chip
        coordinator.add_constraint(ChipAndCoreConstraint(chip.x, chip.y))
        coordinators[chip.x, chip.y] = coordinator
        boards[chip.x, chip.y] = chip.ip_address

    # Go through all the chips and add the workhorses
    n_chips_on_machine = machine.n_chips
    n_workers = 0
    if (model.root_finder):
        n_root_finders = 0
    if (model.cholesky):
        n_cholesky = 0
    for chip in machine.chips:

        # Count the cores in the processor
        # (-1 if this chip also has a coordinator)
        n_cores = len([p for p in chip.processors if not p.is_monitor])
        if (chip.x, chip.y) in coordinators:
            n_cores -= 3  # coordinator and extra_monitor_support (2)
            if (model.root_finder):
                if (model.cholesky):
                    n_cores = n_cores // 3
                else:
                    n_cores = n_cores // 2
        else:
            n_cores -= 1  # just extra_monitor_support
            if (model.root_finder):
                if (model.cholesky):
                    n_cores = n_cores // 3
                else:
                    n_cores = n_cores // 2

        # Find the coordinator for the board (or 0, 0 if it is missing)
        eth_x = chip.nearest_ethernet_x
        eth_y = chip.nearest_ethernet_y
        coordinator = coordinators.get((eth_x, eth_y))
        if coordinator is None:
            print("Warning - couldn't find {}, {} for chip {}, {}".format(
                eth_x, eth_y, chip.x, chip.y))
            coordinator = coordinators[0, 0]
            print("Using coordinator ", coordinator)

        # hard-code remove some cores (chip power monitor etc.) just
        # to see what happens
#        n_cores -= non_worker_cores_per_chip
#        print 'n_cores: ', n_cores

# Add a vertex for each core
        for _ in range(n_cores):

            # Create the vertex and add it to the graph
            vertex = MCMCVertex(coordinator, model)
            n_workers += 1
            g.add_machine_vertex_instance(vertex)

            # Put the vertex on the same board as the coordinator
            vertex.add_constraint(ChipAndCoreConstraint(chip.x, chip.y))

            # Add an edge from the coordinator to the vertex, to send the data
            g.add_machine_edge_instance(MachineEdge(coordinator, vertex),
                                        coordinator.data_partition_name)

            # Add an edge from the vertex to the coordinator,
            # to send acknowledgement
            g.add_machine_edge_instance(MachineEdge(vertex, coordinator),
                                        coordinator.acknowledge_partition_name)

            if (model.root_finder):
                # Create a root finder vertex
                rf_vertex = MCMCRootFinderVertex(vertex, model)
                n_root_finders += 1
                g.add_machine_vertex_instance(rf_vertex)

                # put it on the same chip as the standard mcmc vertex?
                # no - put it on a "nearby" chip, however that works
                rf_vertex.add_constraint(ChipAndCoreConstraint(chip.x, chip.y))

                # Add an edge from mcmc vertex to root finder vertex,
                # to "send" the data - need to work this out
                g.add_machine_edge_instance(MachineEdge(vertex, rf_vertex),
                                            vertex.parameter_partition_name)

                # Add edge from root finder vertex back to mcmc vertex
                # to send acknowledgement / result - need to work this out
                g.add_machine_edge_instance(MachineEdge(rf_vertex, vertex),
                                            vertex.result_partition_name)

            if (model.cholesky):
                # Create a Cholesky vertex
                cholesky_vertex = MCMCCholeskyVertex(vertex, model)
                n_cholesky += 1
                g.add_machine_vertex_instance(cholesky_vertex)

                # put it on the same chip as the standard mcmc vertex?
                # no - put it on a "nearby" chip, however that works
                cholesky_vertex.add_constraint(
                    ChipAndCoreConstraint(chip.x, chip.y))

                # Add an edge from mcmc vertex to Cholesky vertex,
                # to "send" the data - need to work this out
                g.add_machine_edge_instance(
                    MachineEdge(vertex, cholesky_vertex),
                    vertex.cholesky_partition_name)

                # Add edge from Cholesky vertex back to mcmc vertex
                # to send acknowledgement / result - need to work this out
                g.add_machine_edge_instance(
                    MachineEdge(cholesky_vertex, vertex),
                    vertex.cholesky_result_partition_name)

    start_computing_time = time.time()

    logger.info("n_chips_on_machine {}".format(n_chips_on_machine))
    logger.info("Running {} worker cores".format(n_workers))
    if (model.root_finder):
        logger.info("Running {} root finder cores".format(n_root_finders))
    if (model.cholesky):
        logger.info("Running {} Cholesky cores".format(n_cholesky))

    # Run the simulation
    g.run_until_complete()

    mid_computing_time = time.time()

    # Wait for the application to finish
    txrx = g.transceiver()
    app_id = globals_variables.get_simulator()._app_id
    logger.info("Running {} worker cores".format(n_workers))
    if (model.root_finder):
        logger.info("Running {} root finder cores".format(n_root_finders))
    if (model.cholesky):
        logger.info("Running {} Cholesky cores".format(n_cholesky))
    logger.info("Waiting for application to finish...")
    running = txrx.get_core_state_count(app_id, CPUState.RUNNING)
    # there are now cores doing extra_monitor etc.
    non_worker_cores = n_chips_on_machine + (2 * len(boards))
    while running > non_worker_cores:
        time.sleep(0.5)
        error = txrx.get_core_state_count(app_id, CPUState.RUN_TIME_EXCEPTION)
        watchdog = txrx.get_core_state_count(app_id, CPUState.WATCHDOG)
        if error > 0 or watchdog > 0:
            error_msg = "Some cores have failed ({} RTE, {} WDOG)".format(
                error, watchdog)
            raise Exception(error_msg)
        running = txrx.get_core_state_count(app_id, CPUState.RUNNING)
        print('running: ', running)

    finish_computing_time = time.time()

    # Get the data back
    samples = dict()
    for coord, coordinator in iteritems(coordinators):
        samples[coord[0],
                coord[1]] = coordinator.read_samples(g.buffer_manager())

    # Close the machine
    g.stop()

    finish_time = time.time()

    # Note: this timing appears to be incorrect now; needs looking at
    print("Overhead time is %s seconds" % (start_computing_time - start_time))
    print("Computing time is %s seconds" %
          (finish_computing_time - start_computing_time))
    print("run_until_complete takes %s seconds" %
          (mid_computing_time - start_computing_time))
    print("Data collecting time is %s seconds" %
          (finish_time - finish_computing_time))
    print("Overall running time is %s seconds" % (finish_time - start_time))

    return samples
Ejemplo n.º 20
0
# try getting data via mc transmission
start = None
end = None
data = None

sim.transceiver().set_watch_dog(False)

try:
    print("starting data gathering")
    start = float(time.time())
    data = receiver.get_data(
        sim.transceiver(),
        placements.get_placement_of_vertex(receiver))
    end = float(time.time())
    # end sim
    sim.stop()

    # print data
    seconds = float(end - start)
    speed = (mbs * 8) / seconds
    print("Read {} MB in {} seconds ({} Mb/s)".format(mbs, seconds, speed))

    # check data is correct here
    ints = struct.unpack("<{}I".format(len(data) // 4), data)
    start_value = 0

    # print ints
    for value in ints:
        if value != start_value:
            print("should be getting {}, but got {}".format(
                start_value, value))
Ejemplo n.º 21
0
from pacman.model.graphs.machine import MachineEdge

from pkt_injector_vertex import Pkt_Injector_Vertex
from pkt_extractor_vertex import Pkt_Extractor_Vertex

NUM_INJECTORS = 9

gfe.setup(machine_time_step=1000000,
          n_chips_required=1,
          model_binary_folder=os.path.dirname(__file__))

# instantiate injector vertices
injectors = []
for i in range(NUM_INJECTORS):
    iv = Pkt_Injector_Vertex(i)
    gfe.add_machine_vertex_instance(iv)
    injectors.append(iv)

# instantiate extractor vertices
ev = Pkt_Extractor_Vertex()
gfe.add_machine_vertex_instance(ev)

# create links from injectors to extractor
for iv in injectors:
    gfe.add_machine_edge_instance(MachineEdge(iv, ev), iv.inj_lnk)

gfe.run(10000)

gfe.stop()
Ejemplo n.º 22
0
def stop():
    global partition_manager
    partition_manager = None

    front_end.stop()