Ejemplo n.º 1
0
def test_2d_scalar_1():
    print('============== test_2d_scalar_1 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    a = Lambda((x, y, v, u), Dot(Grad(u), Grad(v)) + u * v)
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_scalar_1', a, V, backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    e = zeros((ne1 + 1, ne2 + 1), order='F')
    symbol_f90(x1, x2, t1, t2, e)
    # ...

    print('')
Ejemplo n.º 2
0
def test_3d_scalar_5():
    print('============== test_3d_scalar_5 ================')

    # ... define the weak formulation
    x, y, z = symbols('x y z')

    u = Symbol('u')
    v = Symbol('v')

    a = Lambda((x, y, z, v, u),
               dx(dx(u)) * dx(dx(v)) + dy(dy(u)) * dy(dy(v)) +
               dz(dz(u)) * dz(dz(v)) + Dot(Grad(u), Grad(v)) + u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1, nderiv=2)
    V2 = SplineSpace(p2, grid=grid_2, nderiv=2)
    V3 = SplineSpace(p3, grid=grid_3, nderiv=2)

    V = TensorFemSpace(V1, V2, V3)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_5', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_5', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
Ejemplo n.º 3
0
def test_3d_block_1():
    print('============== test_3d_block_1 ================')

    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    a = Lambda((x, y, z, v, u), Dot(Curl(u), Curl(v)) + 0.2 * Dot(u, v))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    W = TensorFemSpace(V1, V2, V3)
    # ...

    # ... vector space
    V = VectorFemSpace(W, W, W)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_block_1', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_block_1', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
Ejemplo n.º 4
0
def test_2d_block_1():
    print('============== test_2d_block_1 ================')

    # ... define the weak formulation
    x, y = symbols('x y')

    u = IndexedBase('u')
    v = IndexedBase('v')

    a = Lambda((x, y, v, u),
               Rot(u) * Rot(v) + Div(u) * Div(v) + 0.2 * Dot(u, v))
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    W = TensorFemSpace(V1, V2)
    # ...

    # ... vector space
    V = VectorFemSpace(W, W)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_block_1', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_block_1', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
Ejemplo n.º 5
0
def test_2d_scalar_5():
    print('============== test_2d_scalar_5 ================')

    # ... define the weak formulation
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    F = Field('F')

    a = Lambda((x, y, v, u), Dot(Grad(F * u), Grad(v)) + u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    # ...

    F = Spline(V)
    F.coeffs._data[:, :] = 1.

    # ...
    kernel_py = compile_kernel('kernel_scalar_5', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_5', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py, fields={'F': F})
    M_f90 = assemble_matrix(V, kernel_f90, fields={'F': F})
    # ...

    assert_identical_coo(M_py, M_f90)
Ejemplo n.º 6
0
def test_2d_scalar_6():
    print('============== test_2d_scalar_6 ================')

    # ... define the weak formulation
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    a = Lambda((x, y, v, u),
               dx(dx(u)) * dx(dx(v)) + dy(dy(u)) * dy(dy(v)) +
               Dot(Grad(u), Grad(v)) + u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1, nderiv=2)
    V2 = SplineSpace(p2, grid=grid_2, nderiv=2)

    V = TensorFemSpace(V1, V2)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_6', a, V, backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_6', a, V, backend='fortran')

    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
Ejemplo n.º 7
0
def test_2d_scalar_4():
    print('============== test_2d_scalar_4 ================')

    # ... define the weak formulation
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    b0 = Function('b0')
    b1 = Function('b1')

    a = Lambda((x, y, v, u), (b0(x, y) * dx(v) + b1(x, y) * dy(v)) *
               (b0(x, y) * dx(u) + b1(x, y) * dy(u)))
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)

    # ...

    # ... user defined function
    def b0(x, y):
        from numpy import sin
        from scipy import pi

        r = 1.1659397624413860850012270020670 * (1.0 + 0.1 * sin(2 * pi * y))
        return r

    def b1(x, y):
        from numpy import sin
        from scipy import pi

        r = 1.0 * (1.0 + 0.1 * sin(2 * pi * y))
        return r

    # ...

    # ... create an interactive pyccel context
    from pyccel.epyccel import ContextPyccel

    context = ContextPyccel(name='context_4')
    context.insert_function(b0, ['double', 'double'],
                            kind='function',
                            results=['double'])
    context.insert_function(b1, ['double', 'double'],
                            kind='function',
                            results=['double'])

    context.compile()
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_4',
                               a,
                               V,
                               context=context,
                               verbose=True,
                               backend='python')

    kernel_f90 = compile_kernel('kernel_scalar_4',
                                a,
                                V,
                                context=context,
                                verbose=True,
                                backend='fortran')
    # ...

    # ...
    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
Ejemplo n.º 8
0
def test_2d_scalar_3():
    print('============== test_2d_scalar_3 ================')

    # ... define the weak formulation
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    b = Function('b')

    a = Lambda((x, y, v, u), Dot(Grad(u), Grad(v)) + b(x, y) * u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)

    # ...

    # ... user defined function
    def b(x, y):
        r = 1. + x * (1. - x) + y * (1. - y)
        return r

    # ...

    # ... create an interactive pyccel context
    from pyccel.epyccel import ContextPyccel

    context = ContextPyccel(name='context_3')
    context.insert_function(b, ['double', 'double'],
                            kind='function',
                            results=['double'])

    context.compile()
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_3',
                               a,
                               V,
                               context=context,
                               verbose=True,
                               backend='python')

    kernel_f90 = compile_kernel('kernel_scalar_3',
                                a,
                                V,
                                context=context,
                                verbose=True,
                                backend='fortran')
    # ...

    # ...
    M_py = assemble_matrix(V, kernel_py)
    M_f90 = assemble_matrix(V, kernel_f90)
    # ...

    assert_identical_coo(M_py, M_f90)
Ejemplo n.º 9
0
# ... numbers of elements and degres
p1 = 2
p2 = 2
ne1 = 32
ne2 = 32
# ...

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

grid_1 = linspace(0., 1., ne1 + 1)
grid_2 = linspace(0., 1., ne2 + 1)

V1 = SplineSpace(p1, grid=grid_1)
V2 = SplineSpace(p2, grid=grid_2)

V = TensorFemSpace(V1, V2, comm=comm)

# ...
wt = MPI.Wtime()
assembly(V, kernel)
wt = MPI.Wtime() - wt

print('rank: ', rank, '> Elapsed time: {}'.format(wt))
# ...
Ejemplo n.º 10
0
def test_2d_block_2():
    print('============== test_2d_block_2 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    epsilon = Constant('epsilon')

    Laplace = lambda v, u: Dot(Grad(v), Grad(u))
    Mass = lambda v, u: v * u

    u1, u2, p = symbols('u1 u2 p')
    v1, v2, q = symbols('v1 v2 q')

    a = Lambda((x, y, v1, v2, q, u1, u2, p),
               Laplace(v1, u1) - dx(v1) * p + Laplace(v2, u2) - dy(v2) * p +
               q * (dx(u1) + dy(u2)) + epsilon * Mass(q, p))

    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    V = VectorFemSpace(V, V, V)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # TODO not working yet => need complex numbers
    #    # ...
    #    symbol_f90 = compile_symbol('symbol_block_2', a, V,
    #                                d_constants={'epsilon': 0.1},
    #                                backend='fortran')
    #    # ...
    #
    #    # ... example of symbol evaluation
    #    t1 = linspace(-pi,pi, ne1+1)
    #    t2 = linspace(-pi,pi, ne2+1)
    #    x1 = linspace(0.,1., ne1+1)
    #    x2 = linspace(0.,1., ne2+1)
    #    e = zeros((2, 2, ne1+1, ne2+1), order='F')
    #    symbol_f90(x1,x2,t1,t2, e)
    #    # ...

    print('')
Ejemplo n.º 11
0
def test_2d_scalar_3():
    print('============== test_2d_scalar_3 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    b = Function('b')

    a = Lambda((x, y, v, u), Dot(Grad(u), Grad(v)) + b(x, y) * u * v)
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))

    # ...

    # ... user defined function
    def b(x, y):
        r = 1. + x * y
        return r

    # ...

    # ... create an interactive pyccel context
    from pyccel.epyccel import ContextPyccel

    context = ContextPyccel(name='context_scalar_3')
    context.insert_function(b, ['double', 'double'],
                            kind='function',
                            results=['double'])

    context.compile()
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_scalar_3',
                                a,
                                V,
                                context=context,
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    e = zeros((ne1 + 1, ne2 + 1), order='F')
    symbol_f90(x1, x2, t1, t2, e)
    # ...

    print('')
Ejemplo n.º 12
0
def test_3d_scalar_2():
    print('============== test_3d_scalar_2 ================')

    x, y, z = symbols('x y z')

    u = Symbol('u')
    v = Symbol('v')

    c = Constant('c')

    b0 = Constant('b0')
    b1 = Constant('b1')
    b2 = Constant('b2')
    b = Tuple(b0, b1, b2)

    a = Lambda((x, y, z, v, u),
               c * u * v + Dot(b, Grad(v)) * u + Dot(b, Grad(u)) * v)
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    V = TensorFemSpace(V1, V2, V3)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_scalar_2',
                                a,
                                V,
                                d_constants={
                                    'b0': 0.1,
                                    'b1': 1.,
                                    'b2': 1.,
                                    'c': 0.2
                                },
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    t3 = linspace(-pi, pi, ne3 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    x3 = linspace(0., 1., ne3 + 1)
    e = zeros((ne1 + 1, ne2 + 1, ne3 + 1), order='F')
    symbol_f90(x1, x2, x3, t1, t2, t3, e)
    # ...

    print('')
Ejemplo n.º 13
0
def test_3d_block_4():
    print('============== test_3d_block_4 ================')
    """Alfven operator."""
    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    bx = Constant('bx')
    by = Constant('by')
    bz = Constant('bz')
    b = Tuple(bx, by, bz)

    c0 = Constant('c0')
    c1 = Constant('c1')
    c2 = Constant('c2')

    a = Lambda((x, y, z, v, u),
               (c0 * Dot(u, v) + c1 * Div(u) * Div(v) +
                c2 * Dot(Curl(Cross(b, u)), Curl(Cross(b, v)))))
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    Vx = TensorFemSpace(V1, V2, V3)
    Vy = TensorFemSpace(V1, V2, V3)
    Vz = TensorFemSpace(V1, V2, V3)

    V = VectorFemSpace(Vx, Vy, Vz)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_block_4',
                                a,
                                V,
                                d_constants={
                                    'bx': 0.1,
                                    'by': 1.,
                                    'bz': 0.2,
                                    'c0': 0.1,
                                    'c1': 1.,
                                    'c2': 1.
                                },
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    t3 = linspace(-pi, pi, ne3 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    x3 = linspace(0., 1., ne3 + 1)
    e = zeros((3, 3, ne1 + 1, ne2 + 1, ne3 + 1), order='F')
    symbol_f90(x1, x2, x3, t1, t2, t3, e)
    # ...

    print('')
Ejemplo n.º 14
0
def test_3d_block_3():
    print('============== test_3d_block_3 ================')

    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    b = Tuple(1.0, 0., 0.)

    a = Lambda((x, y, z, v, u),
               Dot(Curl(Cross(b, u)), Curl(Cross(b, v))) + 0.2 * Dot(u, v))
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    Vx = TensorFemSpace(V1, V2, V3)
    Vy = TensorFemSpace(V1, V2, V3)
    Vz = TensorFemSpace(V1, V2, V3)

    V = VectorFemSpace(Vx, Vy, Vz)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_block_3', a, V, backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    t3 = linspace(-pi, pi, ne3 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    x3 = linspace(0., 1., ne3 + 1)
    e = zeros((3, 3, ne1 + 1, ne2 + 1, ne3 + 1), order='F')
    symbol_f90(x1, x2, x3, t1, t2, t3, e)
    # ...

    print('')
Ejemplo n.º 15
0
def test_pdes_3d_2():
    print('============ test_pdes_3d_2 =============')

    # ... abstract model
    V = H1Space('V', ldim=3)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    c = Constant('c', real=True, label='mass stabilization')

    a = BilinearForm((v, u), dot(grad(v), grad(u)) + c * v * u)
    # ...

    # ... discretization
    # Input data: degree, number of elements
    p1 = 1
    p2 = 1
    p3 = 1
    ne1 = 4
    ne2 = 4
    ne3 = 4

    # Create uniform grid
    grid_1 = linspace(0., 1., num=ne1 + 1)
    grid_2 = linspace(0., 1., num=ne2 + 1)
    grid_3 = linspace(0., 1., num=ne3 + 1)

    # Create 1D finite element spaces and precompute quadrature data
    V1 = SplineSpace(p1, grid=grid_1)
    V1.init_fem()
    V2 = SplineSpace(p2, grid=grid_2)
    V2.init_fem()
    V3 = SplineSpace(p3, grid=grid_3)
    V3.init_fem()

    # Create 2D tensor product finite element space
    V = TensorFemSpace(V1, V2, V3)
    # ...

    # ...
    discretize_symbol(a, [V, V])
    #    print(mass.symbol.__doc__)
    # ...

    # ...
    n1 = 21
    n2 = 21
    n3 = 21

    t1 = linspace(-pi, pi, n1)
    t2 = linspace(-pi, pi, n2)
    t3 = linspace(-pi, pi, n3)
    x1 = linspace(0., 1., n1)
    x2 = linspace(0., 1., n2)
    x3 = linspace(0., 1., n3)

    xs = [x1, x2, x3]
    ts = [t1, t2, t3]

    e = a.symbol(*xs, *ts, 0.25)
    print('> c = 0.25 :: ', e.min(), e.max())

    e = a.symbol(*xs, *ts, 0.6)
    print('> c = 0.6 :: ', e.min(), e.max())