def test_log_vector_histogram():
    # Construct a minimal SPN.
    h1 = Histogram([0., 1., 2.], [0.25, 0.75], [1, 1], scope=0)
    h2 = Histogram([0., 1., 2.], [0.45, 0.55], [1, 1], scope=1)
    h3 = Histogram([0., 1., 2.], [0.33, 0.67], [1, 1], scope=0)
    h4 = Histogram([0., 1., 2.], [0.875, 0.125], [1, 1], scope=1)

    p0 = Product(children=[h1, h2])
    p1 = Product(children=[h3, h4])
    spn = Sum([0.3, 0.7], [p0, p1])

    inputs = np.column_stack((
        np.random.randint(2, size=30),
        np.random.randint(2, size=30),
    )).astype("float64")

    if not CPUCompiler.isVectorizationSupported():
        print("Test not supported by the compiler installation")
        return 0

    # Execute the compiled Kernel.
    results = CPUCompiler(maxTaskSize=5).log_likelihood(spn, inputs, supportMarginal=False)

    # Compute the reference results using the inference from SPFlow.
    reference = log_likelihood(spn, inputs)
    reference = reference.reshape(30)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(np.isclose(np.exp(results), np.exp(reference)))
Ejemplo n.º 2
0
def test_log_vector_categorical():
    # Construct a minimal SPN
    c1 = Categorical(p=[0.35, 0.55, 0.1], scope=0)
    c2 = Categorical(p=[0.25, 0.625, 0.125], scope=1)
    c3 = Categorical(p=[0.5, 0.2, 0.3], scope=2)
    c4 = Categorical(p=[0.6, 0.15, 0.25], scope=3)
    c5 = Categorical(p=[0.7, 0.11, 0.19], scope=4)
    c6 = Categorical(p=[0.8, 0.14, 0.06], scope=5)
    p = Product(children=[c1, c2, c3, c4, c5, c6])

    # Randomly sample input values.
    inputs = np.column_stack((
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
        np.random.randint(3, size=30),
    )).astype("int32")

    if not CPUCompiler.isVectorizationSupported():
        print("Test not supported by the compiler installation")
        return 0

    # Execute the compiled Kernel.
    results = CPUCompiler().log_likelihood(p, inputs, supportMarginal=False)

    # Compute the reference results using the inference from SPFlow.
    reference = log_likelihood(p, inputs)
    reference = reference.reshape(30)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(np.isclose(np.exp(results), np.exp(reference)))
def test_cpu_gaussian():
    # Construct a minimal SPN using two Gaussian leaves.
    g1 = Gaussian(mean=0.5, stdev=1, scope=0)
    g2 = Gaussian(mean=0.125, stdev=0.25, scope=1)
    g3 = Gaussian(mean=0.345, stdev=0.24, scope=2)
    g4 = Gaussian(mean=0.456, stdev=0.1, scope=3)
    g5 = Gaussian(mean=0.94, stdev=0.48, scope=4)
    g6 = Gaussian(mean=0.56, stdev=0.42, scope=5)
    g7 = Gaussian(mean=0.76, stdev=0.14, scope=6)
    g8 = Gaussian(mean=0.32, stdev=0.8, scope=7)
    g9 = Gaussian(mean=0.58, stdev=0.9, scope=8)
    g10 = Gaussian(mean=0.14, stdev=0.2, scope=9)
    p = Product(children=[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10])

    # Randomly sample input values from the two Gaussian (normal) distributions.
    inputs = np.column_stack(
        (np.random.normal(0.5, 1, 30), np.random.normal(0.125, 0.25, 30),
         np.random.normal(0.345, 0.24, 30), np.random.normal(0.456, 0.1, 30),
         np.random.normal(0.94, 0.48, 30), np.random.normal(0.56, 0.42, 30),
         np.random.normal(0.76, 0.14, 30), np.random.normal(0.32, 0.8, 30),
         np.random.normal(0.58, 0.9,
                          30), np.random.normal(0.14, 0.2,
                                                30))).astype("float64")

    # Insert some NaN in random places into the input data.
    inputs.ravel()[np.random.choice(inputs.size, 10, replace=False)] = np.nan

    if not CPUCompiler.isVectorizationSupported():
        print("Test not supported by the compiler installation")
        return 0

    # Execute the compiled Kernel.
    results = CPUCompiler(computeInLogSpace=False,
                          vectorize=False).log_likelihood(p,
                                                          inputs,
                                                          supportMarginal=True,
                                                          batchSize=10)

    # Compute the reference results using the inference from SPFlow.
    reference = log_likelihood(p, inputs)
    reference = reference.reshape(30)

    # Check the computation results against the reference
    # Check in normal space if log-results are not very close to each other.
    assert np.all(np.isclose(results, reference)) or np.all(
        np.isclose(np.exp(results), np.exp(reference)))
def test_vector_fashion_mnist():
    if not CPUCompiler.isVectorizationSupported():
        print("Test not supported by the compiler installation")
        return 0
    # Locate test resources located in same directory as this script.
    scriptPath = os.path.realpath(os.path.dirname(__file__))

    # Deserialize model
    model = BinaryDeserializer(
        os.path.join(
            scriptPath,
            "nltcs_100_200_2_10_8_8_1_True.bin")).deserialize_from_file()
    spn = model.root

    inputs = np.genfromtxt(os.path.join(scriptPath, "input.csv"),
                           delimiter=",",
                           dtype="float64")
    reference = np.genfromtxt(os.path.join(
        scriptPath, "nltcs_100_200_2_10_8_8_1_True_output.csv"),
                              delimiter=",",
                              dtype="float64")
    reference = reference.reshape(10000)
    # Compile the kernel.
    compiler = CPUCompiler(vectorize=True, computeInLogSpace=True)
    kernel = compiler.compile_ll(spn=spn, batchSize=1, supportMarginal=False)
    # Execute the compiled Kernel.
    time_sum = 0
    for i in range(len(reference)):
        # Check the computation results against the reference
        start = time.time()
        result = compiler.execute(kernel, inputs=np.array([inputs[i]]))
        time_sum = time_sum + time.time() - start
        if not np.isclose(result, reference[i]):
            print(
                f"\nevaluation #{i} failed: result: {result[0]:16.8f}, reference: {reference[i]:16.8f}"
            )
            raise AssertionError()
    print(f"\nExecution of {len(reference)} samples took {time_sum} seconds.")
Ejemplo n.º 5
0
#  This file is part of the SPNC project under the Apache License v2.0 by the
#  Embedded Systems and Applications Group, TU Darmstadt.
#  For the full copyright and license information, please view the LICENSE
#  file that was distributed with this source code.
#  SPDX-License-Identifier: Apache-2.0
# ==============================================================================

import numpy as np
import os
import pytest
import time
from spnc.cpu import CPUCompiler
from xspn.serialization.binary.BinarySerialization import BinaryDeserializer


@pytest.mark.skipif(not CPUCompiler.isVectorizationSupported(),
                    reason="CPU vectorization not supported")
def test_vector_slp_fashion_mnist():
    # Locate test resources located in same directory as this script.
    scriptPath = os.path.realpath(os.path.dirname(__file__))

    # Deserialize model
    model = BinaryDeserializer(
        os.path.join(scriptPath, "fashion_mnist_200_100_4_5_10_9_1_True.bin")
    ).deserialize_from_file()
    spn = model.root

    inputs = np.genfromtxt(os.path.join(scriptPath, "input.csv"),
                           delimiter=",",
                           dtype="float64")
    reference = np.genfromtxt(os.path.join(
#  file that was distributed with this source code.
#  SPDX-License-Identifier: Apache-2.0
# ==============================================================================

import numpy as np

from spn.structure.Base import Product, Sum
from spn.structure.leaves.histogram.Histograms import Histogram
from spn.algorithms.Inference import log_likelihood

from spnc.cpu import CPUCompiler

import pytest


@pytest.mark.skipif(not CPUCompiler.isVectorizationSupported(), reason="CPU vectorization not supported")
def test_log_vector_histogram():
    # Construct a minimal SPN.
    h1 = Histogram([0., 1., 2.], [0.25, 0.75], [1, 1], scope=0)
    h2 = Histogram([0., 1., 2.], [0.45, 0.55], [1, 1], scope=1)
    h3 = Histogram([0., 1., 2.], [0.33, 0.67], [1, 1], scope=0)
    h4 = Histogram([0., 1., 2.], [0.875, 0.125], [1, 1], scope=1)

    p0 = Product(children=[h1, h2])
    p1 = Product(children=[h3, h4])
    spn = Sum([0.3, 0.7], [p0, p1])

    inputs = np.column_stack((
        np.random.randint(2, size=30),
        np.random.randint(2, size=30),
    )).astype("float64")