def test_func_no_wrapping():
    # Select query with function
    select_query = select([
        func.ST_Buffer(Point.geom),  # with wrapping (default behavior)
        func.ST_Buffer(Point.geom, type_=Geometry),  # with wrapping
        func.ST_Buffer(Point.geom, type_=RawGeometry)  # without wrapping
    ])

    # Check the query
    assert str(select_query) == (
        "SELECT "
        "ST_AsEWKB(ST_Buffer(point.geom)) AS \"ST_Buffer_1\", "
        "ST_AsEWKB(ST_Buffer(point.geom)) AS \"ST_Buffer_2\", "
        "ST_Buffer(point.geom) AS \"ST_Buffer_3\" \n"
        "FROM point")
Ejemplo n.º 2
0
    def query(self, source, target, core, column, pkey):
        # ST_Buffer is not yet implemented so BigQueryCore won't work
        # (groups.google.com/d/msg/bq-gis-feedback/Yq4Ku6u2A80/ceVXU01RCgAJ)
        if isinstance(core, BigQueryCore):
            raise ValueError(
                "The LengthOf feature is currently incompatible with \
                BigQueryCore because ST_Buffer is not yet implemented")

        # Get all lines-of-interests (LOIs) of fclass `on`
        lois = select(
            [source.c[self.source_id], source.c.WKT],
            source.c[self.source_column] == self.source_filter,
        ).cte("lois")

        # Create a buffer `within` a distance/radius around each centroid.
        # The point has to be converted to EPSG:3857 so that meters can be
        # used instead of decimal degrees for EPSG:4326.
        buff = select([
            target,
            func.ST_Buffer(core.ST_GeoFromText(target.c[column]),
                           self.within).label("__buffer__"),
        ]).cte("buff")

        # Clip the LOIs with the buffers then calculate the length of all
        # LOIs inside each buffer.
        clip = select(
            [
                buff,
                func.ST_Intersection(
                    core.ST_GeoFromText(lois.c.WKT),
                    func.ST_Transform(buff.c["__buffer__"], 4326),
                ).label("__geom__"),
                func.ST_Length(
                    func.ST_Intersection(
                        func.ST_Transform(core.ST_GeoFromText(lois.c.WKT),
                                          3857),
                        buff.c["__buffer__"],
                    )).label("__len__"),
            ],
            func.ST_Intersects(
                core.ST_GeoFromText(lois.c.WKT),
                func.ST_Transform(buff.c["__buffer__"], 4326),
            ),
        ).cte("clip")

        # Sum the length of all LOIs inside each buffer
        sum_length = (select([
            clip.c[pkey],
            func.sum(clip.c["__len__"]).label(self.feature_name),
        ]).select_from(clip).group_by(clip.c[pkey]).cte("sum_length"))

        # Join the sum of the length of all LOIs inside each buffer
        query = select(
            [
                col for col in sum_length.columns
                if col.key not in ("__len__", "__geom__", "__buffer__")
            ],
            sum_length.c[pkey] == buff.c[pkey],
        )
        return query
Ejemplo n.º 3
0
def get_by_sujeto(db_session: Session, *,
                  sujeto: SujetoInDB) -> Optional[Location]:
    if sujeto.latlng is not None:
        location = db_session.query(Location).filter(
            func.ST_Contains(
                func.ST_Buffer(func.ST_Transform(Location.center, 32631),
                               Location.radius),
                func.ST_Transform(
                    func.ST_GeomFromEWKT('SRID=4326;POINT({} {})'.format(
                        *crud.coordinates.get_latlng_from_geom(
                            sujeto.latlng)[::-1])),
                    32631))).order_by(
                        func.ST_Transform(Location.center, 32631).ST_Buffer(
                            Location.radius).ST_Area().asc()).first()
        if location is not None:
            return location.name
        else:
            return google.get_sujeto_place(sujeto)
    else:
        return None
Ejemplo n.º 4
0
    def __init__(self, trip=None, srid='0'):
        '''This function needs to modify the input data that it is provided.
        
        Special considerations need to be made for geometry fields and remapping
          of keys to avoid collisions.
        '''
        trip = trip.copy()
        self.event_types = {
            'speeding': SpeedingEvent,
            'hard_accel': HardAccelerationEvent,
            'hard_brake': HardBrakeEvent
        }
        if trip is None:
            raise ValueError("A trip object must be supplied")
        trip.pop('user')
        # this path will be used to find speeding_event substrings
        path_linestring = SpatialQueries.points_to_projected_line(trip['path'])
        trip['geom_path'] = path_linestring
        # paths are stored with a 20 M buffer as a polygon to account for gps
        # inaccuracies. This is just a very rough way to do this, more care
        # would be needed for a robust solution, such as greater buffer size,
        # or simply checking that a high percentage of points are within a smaller
        # buffer.
        trip['geom'] = func.ST_Buffer(path_linestring, 20)
        trip_id_string = trip.pop('id')
        trip['trip_id_string'] = trip_id_string
        drive_events = trip.pop('drive_events')
        
        super(Trip, self).__init__(**trip)

        # Instantiate each drive event with its respective class
        # and then append it to its respective list on the trip mapped object
        for event in drive_events:
            cls = self.event_types[event.pop('type')]
            lst = getattr(self, cls.__tablename__)
            lst.append(cls(trip['trip_id_string'], event, path_linestring))
Ejemplo n.º 5
0
    def test_ST_Buffer(self):
        from sqlalchemy.sql import select, func
        from geoalchemy2 import WKBElement, WKTElement

        lake_id = self._create_one()

        s = select([func.ST_Buffer(Lake.__table__.c.geom, 2)])
        r1 = session.execute(s).scalar()
        ok_(isinstance(r1, WKBElement))

        lake = session.query(Lake).get(lake_id)
        r2 = session.execute(lake.geom.ST_Buffer(2)).scalar()
        ok_(isinstance(r2, WKBElement))

        r3 = session.query(Lake.geom.ST_Buffer(2)).scalar()
        ok_(isinstance(r3, WKBElement))

        ok_(r1.data == r2.data == r3.data)

        r4 = session.query(Lake).filter(
            func.ST_Within(WKTElement('POINT(0 0)', srid=4326),
                           Lake.geom.ST_Buffer(2))).one()
        ok_(isinstance(r4, Lake))
        eq_(r4.id, lake_id)
Ejemplo n.º 6
0
    def calculate_summary(self, product_name: str,
                          time: Range) -> TimePeriodOverview:
        """
        Create a summary of the given product/time range.
        """
        log = self.log.bind(product_name=product_name, time=time)
        log.debug("summary.query")

        begin_time, end_time, where_clause = self._where(product_name, time)
        select_by_srid = (select((
            func.ST_SRID(DATASET_SPATIAL.c.footprint).label("srid"),
            func.count().label("dataset_count"),
            func.ST_Transform(
                func.ST_Union(DATASET_SPATIAL.c.footprint),
                self._target_srid(),
                type_=Geometry(),
            ).label("footprint_geometry"),
            func.sum(DATASET_SPATIAL.c.size_bytes).label("size_bytes"),
            func.max(DATASET_SPATIAL.c.creation_time).label(
                "newest_dataset_creation_time"),
        )).where(where_clause).group_by("srid").alias("srid_summaries"))

        # Union all srid groups into one summary.
        result = self._engine.execute(
            select((
                func.sum(
                    select_by_srid.c.dataset_count).label("dataset_count"),
                func.array_agg(select_by_srid.c.srid).label("srids"),
                func.sum(select_by_srid.c.size_bytes).label("size_bytes"),
                func.ST_Union(
                    func.ST_Buffer(select_by_srid.c.footprint_geometry, 0),
                    type_=Geometry(srid=self._target_srid()),
                ).label("footprint_geometry"),
                func.max(select_by_srid.c.newest_dataset_creation_time).label(
                    "newest_dataset_creation_time"),
                func.now().label("summary_gen_time"),
            )))

        rows = result.fetchall()
        log.debug("summary.query.done", srid_rows=len(rows))

        assert len(rows) == 1
        row = dict(rows[0])
        row["dataset_count"] = int(
            row["dataset_count"]) if row["dataset_count"] else 0
        if row["footprint_geometry"] is not None:
            row["footprint_crs"] = self._get_srid_name(
                row["footprint_geometry"].srid)
            row["footprint_geometry"] = geo_shape.to_shape(
                row["footprint_geometry"])
        else:
            row["footprint_crs"] = None
        row["crses"] = None
        if row["srids"] is not None:
            row["crses"] = {self._get_srid_name(s) for s in row["srids"]}
        del row["srids"]

        # Convert from Python Decimal
        if row["size_bytes"] is not None:
            row["size_bytes"] = int(row["size_bytes"])

        has_data = row["dataset_count"] > 0

        log.debug("counter.calc")

        # Initialise all requested days as zero
        day_counts = Counter({
            d.date(): 0
            for d in pd.date_range(begin_time, end_time, closed="left")
        })
        region_counts = Counter()
        if has_data:
            day_counts.update(
                Counter({
                    day.date(): count
                    for day, count in self._engine.execute(
                        select([
                            func.date_trunc(
                                "day",
                                DATASET_SPATIAL.c.center_time.op(
                                    "AT TIME ZONE")(self.grouping_time_zone),
                            ).label("day"),
                            func.count(),
                        ]).where(where_clause).group_by("day"))
                }))
            region_counts = Counter({
                item: count
                for item, count in self._engine.execute(
                    select([
                        DATASET_SPATIAL.c.region_code.label("region_code"),
                        func.count(),
                    ]).where(where_clause).group_by("region_code"))
            })

        summary = TimePeriodOverview(
            **row,
            timeline_period="day",
            time_range=Range(begin_time, end_time),
            timeline_dataset_counts=day_counts,
            region_dataset_counts=region_counts,
            # TODO: filter invalid from the counts?
            footprint_count=row["dataset_count"] or 0,
        )

        log.debug(
            "summary.calc.done",
            dataset_count=summary.dataset_count,
            footprints_missing=summary.dataset_count - summary.footprint_count,
        )
        return summary