def parse_json(input_data, deserialize_function=None, **kwargs):
    """De-serialize JSON data into a Python :class:`dict <python:dict>` object.

    :param input_data: The JSON data to de-serialize.
    :type input_data: :class:`str <python:str>`

    :param deserialize_function: Optionally override the default JSON deserializer.
      Defaults to :obj:`None <python:None>`, which calls the default
      :ref:`simplejson.loads() <simplejson:simplejson.loads>`
      function from the `simplejson <https://github.com/simplejson/simplejson>`_ library.

      .. note::

        Use the ``deserialize_function`` parameter to override the default
        YAML deserializer. A valid ``deserialize_function`` is expected to
        accept a single :class:`str <python:str>` and return a
        :class:`dict <python:dict>`, similar to
        :ref:`simplejson.loads() <simplejson:simplejson.loads>`

        If you wish to pass additional arguments to your ``deserialize_function``
        pass them as keyword arguments (in ``kwargs``).

    :type deserialize_function: callable / :obj:`None <python:None>`

    :param kwargs: Optional keyword parameters that are passed to the
      JSON deserializer function. By default, these are options which are passed
      to :ref:`simplejson.loads() <simplejson:simplejson.loads>`.
    :type kwargs: keyword arguments

    :returns: A :class:`dict <python:dict>` representation of ``input_data``.
    :rtype: :class:`dict <python:dict>`
    """
    is_file = False
    if checkers.is_file(input_data):
        is_file = True

    if deserialize_function is None and not is_file:
        deserialize_function = json.loads
    elif deserialize_function is None and is_file:
        deserialize_function = json.load
    else:
        if checkers.is_callable(deserialize_function) is False:
            raise ValueError('deserialize_function (%s) is not callable' %
                             deserialize_function)

    if not input_data:
        raise DeserializationError('input_data is empty')

    if not is_file:
        try:
            input_data = validators.string(input_data, allow_empty=False)
        except ValueError:
            raise DeserializationError('input_data is not a valid string')

        from_json = deserialize_function(input_data, **kwargs)
    else:
        with open(input_data, 'r') as input_file:
            from_json = deserialize_function(input_file, **kwargs)

    return from_json
Ejemplo n.º 2
0
def parse_yaml(input_data, deserialize_function=None, **kwargs):
    """De-serialize YAML data into a Python :class:`dict <python:dict>` object.

    :param input_data: The YAML data to de-serialize.
    :type input_data: :class:`str <python:str>`

    :param deserialize_function: Optionally override the default YAML deserializer.
      Defaults to :obj:`None <python:None>`, which calls the default ``yaml.safe_load()``
      function from the `PyYAML <https://github.com/yaml/pyyaml>`_ library.

      .. note::

        Use the ``deserialize_function`` parameter to override the default
        YAML deserializer. A valid ``deserialize_function`` is expected to
        accept a single :class:`str <python:str>` and return a
        :class:`dict <python:dict>`, similar to ``yaml.safe_load()``.

        If you wish to pass additional arguments to your ``deserialize_function``
        pass them as keyword arguments (in ``kwargs``).

    :type deserialize_function: callable / :obj:`None <python:None>`

    :param kwargs: Optional keyword parameters that are passed to the
      YAML deserializer function. By default, these are options which are passed
      to ``yaml.safe_load()``.
    :type kwargs: keyword arguments

    :returns: A :class:`dict <python:dict>` representation of ``input_data``.
    :rtype: :class:`dict <python:dict>`
    """
    if deserialize_function is None:
        deserialize_function = yaml.safe_load
    else:
        if checkers.is_callable(deserialize_function) is False:
            raise ValueError('deserialize_function (%s) is not callable' %
                             deserialize_function)

    if not input_data:
        raise DeserializationError('input_data is empty')

    try:
        input_data = validators.string(input_data, allow_empty=False)
    except ValueError:
        raise DeserializationError('input_data is not a valid string')

    from_yaml = yaml.safe_load(input_data, **kwargs)

    return from_yaml
def parse_csv(input_data,
              delimiter='|',
              wrap_all_strings=False,
              null_text='None',
              wrapper_character="'",
              double_wrapper_character_when_nested=False,
              escape_character="\\",
              line_terminator='\r\n'):
    """De-serialize CSV data into a Python :class:`dict <python:dict>` object.

    .. versionadded:: 0.3.0

    .. tip::

      Unwrapped empty column values are automatically interpreted as null
      (:obj:`None <python:None>`).

    :param input_data: The CSV data to de-serialize. Should include column headers
      and at least **one** row of data. Will ignore any rows of data beyond the
      first row.
    :type input_data: :class:`str <python:str>`

    :param delimiter: The delimiter used between columns. Defaults to ``|``.
    :type delimiter: :class:`str <python:str>`

    :param wrapper_character: The string used to wrap string values when
      wrapping is applied. Defaults to ``'``.
    :type wrapper_character: :class:`str <python:str>`

    :param null_text: The string used to indicate an empty value if empty
      values are wrapped. Defaults to `None`.
    :type null_text: :class:`str <python:str>`

    :returns: A :class:`dict <python:dict>` representation of the CSV record.
    :rtype: :class:`dict <python:dict>`

    :raises DeserializationError: if ``input_data`` is not a valid
      :class:`str <python:str>`
    :raises CSVStructureError: if there are less than 2 (two) rows in ``input_data``
      or if column headers are not valid Python variable names

    """
    use_file = False
    if not checkers.is_file(input_data) and not checkers.is_iterable(
            input_data):
        try:
            input_data = validators.string(input_data, allow_empty=False)
        except (ValueError, TypeError):
            raise DeserializationError("input_data expects a 'str', received '%s'" \
                                       % type(input_data))

        input_data = [input_data]
    elif checkers.is_file(input_data):
        use_file = True

    if not wrapper_character:
        wrapper_character = '\''

    if wrap_all_strings:
        quoting = csv.QUOTE_NONNUMERIC
    else:
        quoting = csv.QUOTE_MINIMAL

    if 'sqlathanor' in csv.list_dialects():
        csv.unregister_dialect('sqlathanor')

    csv.register_dialect('sqlathanor',
                         delimiter=delimiter,
                         doublequote=double_wrapper_character_when_nested,
                         escapechar=escape_character,
                         quotechar=wrapper_character,
                         quoting=quoting,
                         lineterminator=line_terminator)

    if not use_file:
        csv_reader = csv.DictReader(input_data,
                                    dialect='sqlathanor',
                                    restkey=None,
                                    restval=None)
        rows = [x for x in csv_reader]
    else:
        if not is_py2:
            with open(input_data, 'r', newline='') as input_file:
                csv_reader = csv.DictReader(input_file,
                                            dialect='sqlathanor',
                                            restkey=None,
                                            restval=None)
                rows = [x for x in csv_reader]
        else:
            with open(input_data, 'r') as input_file:
                csv_reader = csv.DictReader(input_file,
                                            dialect='sqlathanor',
                                            restkey=None,
                                            restval=None)

                rows = [x for x in csv_reader]

    if len(rows) < 1:
        raise CSVStructureError(
            'expected 1 row of data and 1 header row, missing 1')
    else:
        data = rows[0]

    for key in data:
        try:
            validators.variable_name(key)
        except ValueError:
            raise CSVStructureError(
                'column (%s) is not a valid Python variable name' % key)

        if data[key] == null_text:
            data[key] = None

    csv.unregister_dialect('sqlathanor')

    return data
Ejemplo n.º 4
0
    def _parse_csv(cls,
                   csv_data,
                   delimiter='|',
                   wrap_all_strings=False,
                   null_text='None',
                   wrapper_character="'",
                   double_wrapper_character_when_nested=False,
                   escape_character="\\",
                   line_terminator='\r\n',
                   config_set=None):
        """Generate a :class:`dict <python:dict>` from a CSV record.

        .. tip::

          Unwrapped empty column values are automatically interpreted as null
          (:obj:`None <python:None>`).

        :param csv_data: The CSV record. Should be a single row and should **not**
          include column headers.
        :type csv_data: :class:`str <python:str>`

        :param delimiter: The delimiter used between columns. Defaults to ``|``.
        :type delimiter: :class:`str <python:str>`

        :param wrapper_character: The string used to wrap string values when
          wrapping is applied. Defaults to ``'``.
        :type wrapper_character: :class:`str <python:str>`

        :param null_text: The string used to indicate an empty value if empty
          values are wrapped. Defaults to `None`.
        :type null_text: :class:`str <python:str>`

        :param config_set: If not :obj:`None <python:None>`, the named configuration set
          to use. Defaults to :obj:`None <python:None>`.
        :type config_set: :class:`str <python:str>` / :obj:`None <python:None>`

        :returns: A :class:`dict <python:dict>` representation of the CSV record.
        :rtype: :class:`dict <python:dict>`

        :raises DeserializationError: if ``csv_data`` is not a valid
          :class:`str <python:str>`
        :raises CSVStructureError: if the columns in ``csv_data`` do not match
          the expected columns returned by
          :func:`get_csv_column_names() <BaseModel.get_csv_column_names>`
        :raises ValueDeserializationError: if a value extracted from the CSV
          failed when executing its :term:`de-serialization function`.

        """
        try:
            csv_data = validators.string(csv_data, allow_empty=False)
        except (ValueError, TypeError):
            raise DeserializationError("csv_data expects a 'str', received '%s'" \
                                       % type(csv_data))

        if not wrapper_character:
            wrapper_character = '\''

        if wrap_all_strings:
            quoting = csv.QUOTE_NONNUMERIC
        else:
            quoting = csv.QUOTE_MINIMAL

        if 'sqlathanor' in csv.list_dialects():
            csv.unregister_dialect('sqlathanor')

        csv.register_dialect('sqlathanor',
                             delimiter=delimiter,
                             doublequote=double_wrapper_character_when_nested,
                             escapechar=escape_character,
                             quotechar=wrapper_character,
                             quoting=quoting,
                             lineterminator=line_terminator)

        csv_column_names = [
            x for x in cls.get_csv_column_names(
                deserialize=True, serialize=None, config_set=config_set)
        ]

        csv_reader = csv.DictReader([csv_data],
                                    fieldnames=csv_column_names,
                                    dialect='sqlathanor',
                                    restkey=None,
                                    restval=None)

        rows = [x for x in csv_reader]

        if len(rows) > 1:
            raise CSVStructureError('expected 1 row of data, received %s' %
                                    len(csv_reader))
        elif len(rows) == 0:
            data = dict_()
            for column_name in csv_column_names:
                data[column_name] = None
        else:
            data = rows[0]

        if data.get(None, None) is not None:
            raise CSVStructureError('expected %s fields, found %s' %
                                    (len(csv_column_names), len(data.keys())))

        deserialized_data = dict_()
        for key in data:
            if data[key] == null_text:
                deserialized_data[key] = None
                continue

            attribute_name = cls._get_attribute_name(key)
            deserialized_value = cls._get_deserialized_value(
                data[key], 'csv', key, config_set=config_set)

            deserialized_data[attribute_name] = deserialized_value

        csv.unregister_dialect('sqlathanor')

        return deserialized_data
Ejemplo n.º 5
0
    def _parse_dict(cls,
                    input_data,
                    format,
                    error_on_extra_keys=True,
                    drop_extra_keys=False,
                    config_set=None):
        """Generate a processed :class:`dict <python:dict>` object from
        in-bound :class:`dict <python:dict>` data.

        :param input_data: An inbound :class:`dict <python:dict>` object which
          can be processed for de-serialization.
        :type input_data: :class:`dict <python:dict>`

        :param format: The format from which ``input_data`` was received. Accepts:
          ``'csv'``, ``'json'``, ``'yaml'``, and ``'dict'``.
        :type format: :class:`str <python:str>`

        :param error_on_extra_keys: If ``True``, will raise an error if an
          unrecognized key is found in ``dict_data``. If ``False``, will
          either drop or include the extra key in the result, as configured in
          the ``drop_extra_keys`` parameter. Defaults to ``True``.
        :type error_on_extra_keys: :class:`bool <python:bool>`

        :param drop_extra_keys: If ``True``, will omit unrecognized top-level keys
          from the resulting :class:`dict <python:dict>`. If ``False``, will
          include unrecognized keys or raise an error based on the configuration of
          the ``error_on_extra_keys`` parameter. Defaults to ``False``.
        :type drop_extra_keys: :class:`bool <python:bool>`

        :param config_set: If not :obj:`None <python:None>`, the named configuration set
          to use when processing the input. Defaults to :obj:`None <python:None>`.
        :type config_set: :class:`str <python:str>` / :obj:`None <python:None>`

        :returns: A processed :class:`dict <python:dict>` object that has had
          :term:`deserializer functions` applied to it.
        :rtype: :class:`dict <python:dict>`

        :raises ExtraKeyError: if ``error_on_extra_keys`` is ``True`` and
          ``input_data`` contains top-level keys that are not recognized as
          attributes for the instance model.
        :raises DeserializationError: if ``input_data`` is
          not a :class:`dict <python:dict>` or JSON object serializable to a
          :class:`dict <python:dict>` or if ``input_data`` is empty.
        :raises InvalidFormatError: if ``format`` is not a supported value
        """
        if format not in ['csv', 'json', 'yaml', 'dict']:
            raise InvalidFormatError("format '%s' not supported" % format)

        try:
            input_data = validators.dict(input_data,
                                         allow_empty=True,
                                         json_serializer=json)
        except ValueError:
            raise DeserializationError('input_data is not a dict')

        if not input_data or len(input_data.keys()) == 0:
            raise DeserializationError("input_data is empty")

        dict_object = dict_()

        if format == 'csv':
            attribute_getter = cls.get_csv_serialization_config
        elif format == 'json':
            attribute_getter = cls.get_json_serialization_config
        elif format == 'yaml':
            attribute_getter = cls.get_yaml_serialization_config
        elif format == 'dict':
            attribute_getter = cls.get_dict_serialization_config

        attributes = [
            x for x in attribute_getter(
                deserialize=True, serialize=None, config_set=config_set)
            if hasattr(cls, x.name)
        ]

        if not attributes:
            raise DeserializableAttributeError(
                "'%s' has no '%s' de-serializable attributes" %
                (type(cls.__name__), format))

        attribute_names = [x.display_name or x.name for x in attributes]
        extra_keys = [x for x in input_data.keys() if x not in attribute_names]
        if extra_keys and error_on_extra_keys:
            raise ExtraKeyError("input data had extra keys: %s" % extra_keys)

        for attribute in attributes:
            key = attribute.display_name or attribute.name
            try:
                value = input_data.pop(key)
            except KeyError:
                continue

            value = cls._get_deserialized_value(
                value,
                format,
                key,
                error_on_extra_keys=error_on_extra_keys,
                drop_extra_keys=drop_extra_keys,
                config_set=config_set)

            dict_object[attribute.name] = value

        if input_data and not drop_extra_keys:
            for key in input_data:
                dict_object[key] = input_data[key]

        return dict_object