bounds[0, 0]) / 2 with open('dataset.pickle', 'wb') as f: pickle.dump(dataset, f) for ii in range(iteration): print( '********************************************************************') print('iteration', ii) model = BO(dataset, bounds, bfgs_iter, debug=False) best_x = model.best_x best_y = model.best_y print('best_x', best_x) print('best_y', best_y) y_pred, y_var = model.predict(X_star) train_x = dataset['train_x'] train_y = dataset['train_y'] train_x_real = train_x * (bounds[0, 1] - bounds[0, 0]) + (bounds[0, 1] + bounds[0, 0]) / 2 p = np.minimum(int(K / 5), 5) def task(x0): x0 = model.optimize_wEI(x0) wEI_tmp = model.calc_wEI(x0) return x0, wEI_tmp pool = multiprocessing.Pool(processes=5) x0_list = [] for i in range(int(K / p)):
bfgs_iter = conf['max_iter'] num_layers = conf['num_layers'] layer_sizes = conf['layer_size'] activations = conf['activation'] l1 = conf['l1'] l2 = conf['l2'] scale = conf['scale'] for i in dataset.keys(): print(i, dataset[i].shape) tmp = np.copy(dataset) model = BO(name, num_models, dataset, bfgs_iter=bfgs_iter, debug=False, scale=scale, num_layers=num_layers, layer_sizes=layer_sizes, activations=activations, l1=l1, l2=l2) pys, ps2s = model.predict(dataset['test_x']) print('pys', pys.T) print('ps2s', ps2s.T) print('true', dataset['test_y']) delta = pys.T - dataset['test_y'] print('delta', delta) print('MSE', np.dot(delta, delta.T))