def predict_label():
    _data = Data()
    labels = _data.labels
    if request.method == 'GET':
        data = _data.test_data
        image_data = get_image_data(data)
        prediction = predict_image(image_data)
        argmax = int(np.argmax(np.array(prediction)[0]))
        return jsonify({labels[argmax]: prediction[0][argmax]})

    elif request.method == 'POST':
        input_data = request.get_json()
        raw_data = input_data["image_data"]
        decoded = base64.b64decode(str(raw_data))
        io_bytes = io.BytesIO(decoded)
        data = Image.open(io_bytes)
        image_data = get_image_data(data)
        prediction = predict_image(image_data)
        argmax = int(np.argmax(np.array(prediction)[0]))
        job_id = data['job_id'] if 'job_id' in input_data.keys(
        ) else get_job_id()
        return jsonify({
            labels[argmax]: prediction[0][argmax],
            'job_id': job_id
        })
Ejemplo n.º 2
0
async def _predict_async_post(
    data: Data,
    job_id: str,
    background_tasks: BackgroundTasks = BackgroundTasks()
) -> Dict[str, List[float]]:
    image = base64.b64decode(str(data.image_data))
    io_bytes = io.BytesIO(image)
    data.image_data = Image.open(io_bytes)
    store_data_job._save_data_job(data, job_id, background_tasks, True)
    return {'job_id': job_id}
Ejemplo n.º 3
0
async def _predict_label(
    data: Data,
    job_id: str,
    background_tasks: BackgroundTasks = BackgroundTasks()
) -> Dict[str, List[float]]:
    image = base64.b64decode(str(data.image_data))
    io_bytes = io.BytesIO(image)
    data.image_data = Image.open(io_bytes)
    label_proba = await __async_predict_label(data)
    store_data_job._save_data_job(data, job_id, background_tasks, False)
    return {'prediction': label_proba, 'job_id': job_id}
def predict():
    _data = Data()
    if request.method == 'GET':
        data = _data.test_data
        image_data = get_image_data(data)
        prediction = predict_image(image_data)
        return jsonify({'prediction': prediction})

    elif request.method == 'POST':
        input_data = request.get_json()
        raw_data = input_data["image_data"]
        decoded = base64.b64decode(str(raw_data))
        io_bytes = io.BytesIO(decoded)
        data = Image.open(io_bytes)
        image_data = get_image_data(data)
        prediction = predict_image(image_data)
        job_id = data['job_id'] if 'job_id' in input_data.keys(
        ) else get_job_id()
        return jsonify({'prediction': prediction, 'job_id': job_id})
Ejemplo n.º 5
0
def predict():
    _data = Data()
    if request.method == "GET":
        data = _data.test_data
        image_data = get_image_data(data)
        prediction = predict_image(image_data)
        return jsonify({"prediction": prediction})

    elif request.method == "POST":
        input_data = request.get_json()
        raw_data = input_data["image_data"]
        decoded = base64.b64decode(str(raw_data))
        io_bytes = io.BytesIO(decoded)
        data = Image.open(io_bytes)
        image_data = get_image_data(data)
        prediction = predict_image(image_data)
        job_id = data["job_id"] if "job_id" in input_data.keys(
        ) else get_job_id()
        return jsonify({"prediction": prediction, "job_id": job_id})
Ejemplo n.º 6
0
async def _test_label(data: Data = Data()) -> Dict[str, Dict[str, float]]:
    data.image_data = data.test_data
    label_proba = __predict_label(data)
    return {'prediction': label_proba}
Ejemplo n.º 7
0
async def _test(data: Data = Data()) -> Dict[str, int]:
    data.image_data = data.test_data
    __predict(data)
    return {'prediction': data.prediction}
Ejemplo n.º 8
0
async def __async_predict(data: Data):
    image_data = get_image_data(data.image_data)
    output_np = await active_predictor.async_predict(image_data)
    reshaped_output_nps = DataConverter.reshape_output(output_np)
    data.prediction = reshaped_output_nps.tolist()
    logger.info({'job_id': data.job_id, 'prediction': data.prediction})
Ejemplo n.º 9
0
def __predict(data: Data):
    input_np = DataConverter.convert_input_data_to_np(data.input_data)
    output_np = active_predictor.predict(input_np)
    reshaped_output_nps = DataConverter.reshape_output(output_np)
    data.prediction = reshaped_output_nps.tolist()
    logger.info({'job_id': data.job_id, 'prediction': data.prediction})
Ejemplo n.º 10
0
def labels():
    _data = Data()
    labels = _data.labels
    return jsonify({'labels': labels})
Ejemplo n.º 11
0
def labels():
    _data = Data()
    labels = _data.labels
    return jsonify({"labels": labels})
Ejemplo n.º 12
0
def _test_label(data: Data = Data()) -> Dict[str, Dict[str, float]]:
    data.input_data = data.test_data
    label_proba = __predict_label(data)
    return {"prediction": label_proba}
Ejemplo n.º 13
0
def _test(data: Data = Data()) -> Dict[str, int]:
    data.input_data = data.test_data
    __predict(data)
    return {"prediction": data.prediction}
Ejemplo n.º 14
0
async def __async_predict(data: Data):
    input_np = DataConverter.convert_input_data_to_np(data.input_data)
    output_np = await active_predictor.async_predict(input_np)
    reshaped_output_nps = DataConverter.reshape_output(output_np)
    data.prediction = reshaped_output_nps.tolist()
    logger.info({"job_id": data.job_id, "prediction": data.prediction})