Ejemplo n.º 1
0
def error_grid(noise_case=0):
    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')
    stations = [1, 2, 3, 4, 5, 6, 7, 8, 9]

    ww3_obs_all = \
        [obs.time_series() for obs in
         wave_watch_results(path_to_results='../../samples/ww-res/', stations=stations)]

    model_all = FidelityFakeModel(grid_file=grid,
                                  observations=ww3_obs_all,
                                  stations_to_out=stations,
                                  error=error_rmse_all,
                                  forecasts_path='../../../wind-postproc/out')

    with open(f'../../samples/params_rmse_{noise_case}.csv',
              mode='w',
              newline='') as csv_file:
        writer = csv.writer(csv_file, delimiter=',')

        header = ['DRF', 'CFW', 'STPM']
        error_columns = [f'ERROR_K{station}' for station in stations]
        header.extend(error_columns)
        writer.writerow(header)

        fidelity = 240
        for row in grid.rows:
            metrics = model_all.output(
                params=SWANParams(drf=row.model_params.drf,
                                  cfw=row.model_params.cfw,
                                  stpm=row.model_params.stpm,
                                  fidelity_time=fidelity))
            row_to_write = row.model_params.params_list()
            row_to_write.extend(metrics)
            writer.writerow(row_to_write)
Ejemplo n.º 2
0
def plot_error_variance(station_index=2, stmp_index=3):
    noise_dirs = {
        1: '../../../samples/wind-noice-runs/results/1/',
        15: '../../../samples/wind-noice-runs/results/15/',
        25: '../../../samples/wind-noice-runs/results/25/'
    }
    model_by_noise = {}

    grid = CSVGridFile('../../samples/wind-exp-params.csv')

    for noise in noise_dirs.keys():
        model = FidelityFakeModel(grid_file=grid,
                                  forecasts_path=noise_dirs[noise],
                                  fidelity=noise)
        model_by_noise[noise] = model

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    for noise in model_by_noise.keys():
        drf, cfw, error = \
            params_and_error_grid(model=model_by_noise[noise], station_index=station_index, stpm_index=stmp_index)

        ax.scatter(drf, cfw, error, label=f'noise = {noise}')
        ax.set_xlabel('drf')
        ax.set_ylabel('cfw')

    plt.title(f'Error variance for K{station_index} station')
    plt.legend()
    plt.show()
Ejemplo n.º 3
0
def run_evolution(sur_points, time_delta, space_delta, point_for_retrain, gens_to_change_fidelity, max_gens, pop_size,
                  archive_size, iter_id, deadline):
    train_stations = [1, 2, 3]

    initial_fidelity = (180, 56)

    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')

    ww3_obs = \
        [obs.time_series() for obs in
         wave_watch_results(path_to_results='../../samples/ww-res/', stations=train_stations)]

    train_model = FidelityFakeModel(grid_file=grid, observations=ww3_obs,
                                    stations_to_out=train_stations, error=error_rmse_all,
                                    forecasts_path='../../../2fidelity/*', forecasts_range=(0, 1),
                                    sur_points=sur_points,
                                    is_surrogate=True, initial_fidelity=initial_fidelity)

    operators = default_operators()

    handler = FidelityHandler(surrogates=train_model.surrogates_by_stations, time_delta=time_delta,
                              space_delta=space_delta,
                              point_for_retrain=point_for_retrain, gens_to_change_fidelity=gens_to_change_fidelity)

    dyn_params = SPEA2.Params(max_gens=max_gens, pop_size=pop_size, archive_size=archive_size,
                              crossover_rate=0.7, mutation_rate=0.7,
                              mutation_value_rate=[0.1, 0.01, 0.001])

    history, _, _ = DynamicSPEA2(
        params=dyn_params,
        objectives=partial(calculate_objectives_interp, train_model),
        evolutionary_operators=operators,
        fidelity_handler=handler).solution(verbose=True)

    best = history.last()

    fieldnames = ['ID', 'IterId', 'SetId', 'drf', 'cfw', 'stpm',
                  'rmse_all', 'rmse_peak', 'mae_all', 'mae_peak', 'deadline']

    with open(os.path.join("C:\\metaopt2", "res-nondd.csv"), 'a', newline='') as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

        row_to_write = {'ID': run_id, 'IterId': iter_id, 'SetId': 0,
                        'drf': best.genotype.drf,
                        'cfw': best.genotype.cfw,
                        'stpm': best.genotype.stpm,
                        'deadline': deadline}
        metrics = all_error_metrics(best.genotype, models_to_tests)
        for metric_name in metrics.keys():
            stations_metrics = metrics[metric_name]
            stations_to_write = {}
            for station_idx in range(len(stations_metrics)):
                key = f'st{station_idx + 1}'
                stations_to_write.update({key: stations_metrics[station_idx]})
            row_to_write.update({metric_name: stations_to_write})

        writer.writerow(row_to_write)

    return history.last().error_value
Ejemplo n.º 4
0
def run_genetic_opt(max_gens, pop_size, archive_size, crossover_rate,
                    mutation_rate, mutation_value_rate, stations, **kwargs):
    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')
    ww3_obs = \
        [obs.time_series() for obs in wave_watch_results(path_to_results='../../samples/ww-res/', stations=stations)]

    train_model = FidelityFakeModel(grid_file=grid,
                                    observations=ww3_obs,
                                    stations_to_out=stations,
                                    error=error_rmse_all,
                                    forecasts_path='../../../wind-fidelity/*')
    test_range = (0, 1)
    test_model = model_all_stations(forecasts_range=test_range)

    operators = default_operators()
    history, archive_history = DefaultSPEA2(
        params=DefaultSPEA2.Params(max_gens=max_gens,
                                   pop_size=pop_size,
                                   archive_size=archive_size,
                                   crossover_rate=crossover_rate,
                                   mutation_rate=mutation_rate,
                                   mutation_value_rate=mutation_value_rate),
        objectives=partial(calculate_objectives_interp, train_model),
        evolutionary_operators=operators).solution(verbose=False)

    exptime2 = str(datetime.datetime.now().time()).replace(":", "-")
    # save_archive_history(archive_history, f'rob-exp-bl-{exptime2}.csv')

    params = history.last().genotype

    if 'save_figures' in kwargs and kwargs['save_figures'] is True:
        params = test_model.closest_params(params)
        closest_params = SWANParams(drf=params[0],
                                    cfw=params[1],
                                    stpm=params[2],
                                    fidelity_time=params[3],
                                    fidelity_space=params[4])

        drf_idx, cfw_idx, stpm_idx, fid_time_idx, fid_space_idx = test_model.params_idxs(
            closest_params)

        forecasts = test_model.grid[drf_idx, cfw_idx, stpm_idx, fid_time_idx,
                                    fid_space_idx]

        plot_results(forecasts=forecasts,
                     observations=wave_watch_results(
                         path_to_results='../../samples/ww-res/',
                         stations=ALL_STATIONS),
                     baseline=default_params_forecasts(test_model),
                     save=True,
                     file_path=kwargs['figure_path'],
                     values_range=test_range)

    return history.last()
Ejemplo n.º 5
0
def model_all_stations(forecasts_range=(0, 1)):
    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')
    ww3_obs = \
        [obs.time_series() for obs in
         wave_watch_results(path_to_results='../../samples/ww-res/', stations=ALL_STATIONS)]

    model = FidelityFakeModel(grid_file=grid,
                              observations=ww3_obs,
                              stations_to_out=ALL_STATIONS,
                              error=error_rmse_all,
                              forecasts_path='../../../2fidelity/*',
                              forecasts_range=forecasts_range)

    return model
Ejemplo n.º 6
0
def run_evolution():
    train_stations = [1]
    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')

    ww3_obs = \
        [obs.time_series() for obs in
         wave_watch_results(path_to_results='../../samples/ww-res/', stations=train_stations)]

    initial_fidelity = (180, 56)
    sur_points = 5
    train_model = FidelityFakeModel(grid_file=grid,
                                    observations=ww3_obs,
                                    stations_to_out=train_stations,
                                    error=error_rmse_all,
                                    forecasts_path='../../../2fidelity/*',
                                    forecasts_range=(0, 1),
                                    sur_points=sur_points,
                                    is_surrogate=True,
                                    initial_fidelity=initial_fidelity)

    operators = default_operators()

    handler = FidelityHandler(surrogates=train_model.surrogates_by_stations,
                              time_delta=15,
                              space_delta=7,
                              point_for_retrain=3,
                              gens_to_change_fidelity=10)

    dyn_params = SPEA2.Params(max_gens=100,
                              pop_size=10,
                              archive_size=5,
                              crossover_rate=0.7,
                              mutation_rate=0.7,
                              mutation_value_rate=[0.1, 0.01, 0.001])

    ex_time = DynamicSPEA2PerfModel.get_execution_time(sur_points,
                                                       initial_fidelity,
                                                       dyn_params, handler)

    print(ex_time)

    _, _, points_by_fid = DynamicSPEA2(
        params=dyn_params,
        objectives=partial(calculate_objectives_interp, train_model),
        evolutionary_operators=operators,
        fidelity_handler=handler,
        points_by_fidelity=default_points_by_fidelity(size=5)).solution(
            verbose=True)

    points_by_fid
Ejemplo n.º 7
0
def plot_params_space():
    grid = CSVGridFile('../../samples/wind-exp-params.csv')
    forecasts_path = '../../../samples/wind-noice-runs/results/1/'

    fake = FidelityFakeModel(grid_file=grid, forecasts_path=forecasts_path)

    drf, cfw = np.meshgrid(fake.grid_file.drf_grid, fake.grid_file.cfw_grid)
    stpm_fixed = fake.grid_file.stpm_grid[0]

    stations = 3
    error = np.ones(shape=(stations, drf.shape[0], drf.shape[1]))

    for i in range(drf.shape[0]):
        for j in range(drf.shape[1]):
            diff = fake.output(params=SWANParams(
                drf=drf[i, j], cfw=cfw[i, j], stpm=stpm_fixed))
            for station in range(stations):
                error[station, i, j] = diff[station]
Ejemplo n.º 8
0
def run_genetic_opt(max_gens, pop_size, archive_size, crossover_rate,
                    mutation_rate, mutation_value_rate, sur_points, stations,
                    **kwargs):
    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')
    ww3_obs = \
        [obs.time_series() for obs in wave_watch_results(path_to_results='../../samples/ww-res/', stations=stations)]

    train_model = FidelityFakeModel(grid_file=grid,
                                    observations=ww3_obs,
                                    stations_to_out=stations,
                                    error=error_rmse_all,
                                    forecasts_path='../../../2fidelity/*',
                                    is_surrogate=True,
                                    sur_points=sur_points,
                                    initial_fidelity=(180, 56))
    test_range = (0, 1)
    test_model = model_all_stations(forecasts_range=test_range)

    operators = default_operators()

    handler = FidelityHandler(surrogates=train_model.surrogates_by_stations,
                              time_delta=30,
                              space_delta=14,
                              point_for_retrain=3,
                              gens_to_change_fidelity=10)

    history, archive_history, _ = DynamicSPEA2(
        params=SPEA2.Params(max_gens=max_gens,
                            pop_size=30,
                            archive_size=10,
                            crossover_rate=crossover_rate,
                            mutation_rate=mutation_rate,
                            mutation_value_rate=mutation_value_rate),
        objectives=partial(calculate_objectives_interp, train_model),
        evolutionary_operators=operators,
        fidelity_handler=handler).solution(verbose=False)

    exptime2 = str(datetime.datetime.now().time()).replace(":", "-")
    # save_archive_history(archive_history, f'rob-exp-bl-{exptime2}.csv')

    params = history.last().genotype

    return history.last()
Ejemplo n.º 9
0
def init_models_to_tests():
    metrics = {'rmse_all': error_rmse_all,
               'rmse_peak': error_rmse_peak,
               'mae_all': error_mae_all,
               'mae_peak': error_mae_peak}

    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')
    ww3_obs = \
        [obs.time_series() for obs in
         wave_watch_results(path_to_results='../../samples/ww-res/', stations=ALL_STATIONS)]

    models = {}
    for metric_name in metrics.keys():
        model = FidelityFakeModel(grid_file=grid, observations=ww3_obs, stations_to_out=ALL_STATIONS,
                                  error=metrics[metric_name],
                                  forecasts_path='../../../2fidelity/*')
        models[metric_name] = model

    return models
Ejemplo n.º 10
0
def grid_rmse():
    # fake, grid = real_obs_config()

    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')

    stations = [1, 2, 3]

    ww3_obs = \
        [obs.time_series() for obs in wave_watch_results(path_to_results='../../samples/ww-res/', stations=stations)]

    fake = FidelityFakeModel(
        grid_file=grid,
        observations=ww3_obs,
        stations_to_out=stations,
        error=error_rmse_peak,
        forecasts_path='../../../wind-noice-runs/results_fixed/0')

    errors_total = []
    m_error = pow(10, 9)
    with open('../../samples/params_rmse.csv', mode='w',
              newline='') as csv_file:
        writer = csv.writer(csv_file, delimiter=',')
        writer.writerow([
            'ID', 'DRF', 'CFW', 'STPM', 'RMSE_K1', 'RMSE_K2', 'RMSE_K3',
            'TOTAL_RMSE'
        ])
        for row in grid.rows:
            error = fake.output(params=row.model_params)
            print(grid.rows.index(row), error)

            if m_error > rmse(error):
                m_error = rmse(error)
                print(f"new min: {m_error}; {row.model_params.params_list()}")
            errors_total.append(rmse(error))

            row_to_write = row.model_params.params_list()
            row_to_write.extend(error)
            row_to_write.append(rmse(error))
            writer.writerow(row_to_write)

    print(f'min total rmse: {min(errors_total)}')
Ejemplo n.º 11
0
def optimize_test(train_stations,
                  max_gens,
                  pop_size,
                  archive_size,
                  crossover_rate,
                  mutation_rate,
                  mutation_value_rate,
                  sur_points,
                  plot_figures=True):
    train_range = (0, 1)
    test_range = (0, 1)

    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')

    ww3_obs = \
        [obs.time_series() for obs in
         wave_watch_results(path_to_results='../../samples/ww-res/', stations=train_stations)]

    error = error_rmse_all
    train_model = FidelityFakeModel(grid_file=grid,
                                    observations=ww3_obs,
                                    stations_to_out=train_stations,
                                    error=error,
                                    forecasts_path='../../../2fidelity/*',
                                    forecasts_range=train_range,
                                    is_surrogate=True,
                                    sur_points=sur_points)

    operators = default_operators()

    history, archive_history = DefaultSPEA2(
        params=DefaultSPEA2.Params(max_gens,
                                   pop_size=pop_size,
                                   archive_size=archive_size,
                                   crossover_rate=crossover_rate,
                                   mutation_rate=mutation_rate,
                                   mutation_value_rate=mutation_value_rate),
        objectives=partial(calculate_objectives_interp, train_model),
        evolutionary_operators=operators).solution(verbose=True)

    params = history.last().genotype

    if plot_figures:
        test_model = model_all_stations(forecasts_range=test_range)
        params = test_model.closest_params(params)
        closest_params = SWANParams(drf=params[0],
                                    cfw=params[1],
                                    stpm=params[2],
                                    fidelity_time=params[3],
                                    fidelity_space=params[4])

        drf_idx, cfw_idx, stpm_idx, fid_time_idx, fid_space_idx = test_model.params_idxs(
            closest_params)

        forecasts = test_model.grid[drf_idx, cfw_idx, stpm_idx, fid_time_idx,
                                    fid_space_idx]

        plot_results(forecasts=forecasts,
                     observations=wave_watch_results(
                         path_to_results='../../samples/ww-res/',
                         stations=ALL_STATIONS),
                     baseline=default_params_forecasts(test_model))
        plot_population_movement(archive_history, grid)

    return history.last().error_value
Ejemplo n.º 12
0
def run_evolution(sur_points, time_delta, space_delta, point_for_retrain,
                  gens_to_change_fidelity, max_gens, pop_size, archive_size):
    train_stations = [1]

    initial_fidelity = (180, 56)
    #sur_points = 5

    dyn_params = SPEA2.Params(max_gens=max_gens,
                              pop_size=pop_size,
                              archive_size=archive_size,
                              crossover_rate=0.7,
                              mutation_rate=0.7,
                              mutation_value_rate=[0.1, 0.01, 0.001])

    grid = CSVGridFile('../../samples/wind-exp-params-new.csv')

    ww3_obs = \
        [obs.time_series() for obs in
         wave_watch_results(path_to_results='../../samples/ww-res/', stations=train_stations)]

    train_model = FidelityFakeModel(grid_file=grid,
                                    observations=ww3_obs,
                                    stations_to_out=train_stations,
                                    error=error_rmse_all,
                                    forecasts_path='../../../2fidelity/*',
                                    forecasts_range=(0, 1),
                                    sur_points=sur_points,
                                    is_surrogate=True,
                                    initial_fidelity=initial_fidelity)

    operators = default_operators()

    handler = FidelityHandler(surrogates=train_model.surrogates_by_stations,
                              time_delta=15,
                              space_delta=7,
                              point_for_retrain=3,
                              gens_to_change_fidelity=10)

    dyn_params = SPEA2.Params(max_gens=max_gens,
                              pop_size=pop_size,
                              archive_size=archive_size,
                              crossover_rate=0.7,
                              mutation_rate=0.7,
                              mutation_value_rate=[0.1, 0.01, 0.001])

    # ex_time = DynamicSPEA2PerfModel.get_execution_time(sur_points, initial_fidelity, dyn_params, handler)

    # print(ex_time)

    history, _, _ = DynamicSPEA2(
        params=dyn_params,
        objectives=partial(calculate_objectives_interp, train_model),
        evolutionary_operators=operators,
        fidelity_handler=handler).solution(verbose=True)

    fieldnames = [
        'ID', 'deadline', 'sur_points', 'gens_to_change_fidelity', 'max_gens',
        'pop_size', 'error'
    ]

    with open(os.path.join("C:\\metaopt1", "res1.csv"), 'a',
              newline='') as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

        row_to_write = {
            'ID': 0,
            'deadline': deadline,
            'sur_points': sur_points,
            'gens_to_change_fidelity': gens_to_change_fidelity,
            'max_gens': max_gens,
            'pop_size': pop_size,
            'error': history.last().error_value
        }

        writer.writerow(row_to_write)

    return history.last().error_value