Ejemplo n.º 1
0
def main(params):
    opts = get_params(params)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == "uniform":
        probs = []
        probs_by_att = np.ones(opts.n_values)
        probs_by_att /= probs_by_att.sum()
        for i in range(opts.n_attributes):
            probs.append(probs_by_att)
        probs_attributes = [1] * opts.n_attributes

    agent_1 = AgentBaseline2(vocab_size=opts.vocab_size,
                             n_features=opts.n_features,
                             max_len=opts.max_len,
                             embed_dim=opts.sender_embedding,
                             sender_hidden_size=opts.sender_hidden,
                             receiver_hidden_size=opts.receiver_hidden,
                             sender_cell=opts.sender_cell,
                             receiver_cell=opts.receiver_cell,
                             sender_num_layers=opts.sender_num_layers,
                             receiver_num_layers=opts.receiver_num_layers,
                             force_eos=force_eos)

    agent_1.load_state_dict(
        torch.load(opts.agent_1_weights, map_location=torch.device('cpu')))
    agent_1.to(device)

    agent_2 = AgentBaseline2(vocab_size=opts.vocab_size,
                             n_features=opts.n_features,
                             max_len=opts.max_len,
                             embed_dim=opts.sender_embedding,
                             sender_hidden_size=opts.sender_hidden,
                             receiver_hidden_size=opts.receiver_hidden,
                             sender_cell=opts.sender_cell,
                             receiver_cell=opts.receiver_cell,
                             sender_num_layers=opts.sender_num_layers,
                             receiver_num_layers=opts.receiver_num_layers,
                             force_eos=force_eos)

    agent_2.load_state_dict(
        torch.load(opts.agent_2_weights, map_location=torch.device('cpu')))
    agent_2.to(device)

    noise_robustness_score_1 = compute_noise_robustness(
        agent_1, agent_2, opts.n_sampling, opts.noise_prob, opts.max_len,
        opts.n_features, device)

    np.save(opts.dir_save + '/training_info/average_train_1.npy',
            complexity_train_1)

    core.close()
Ejemplo n.º 2
0
def main(params):
    print(torch.cuda.is_available())
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    # Distribution of the inputs
    if opts.probs=="uniform":
        probs=[]
        probs_by_att = np.ones(opts.n_values)
        probs_by_att /= probs_by_att.sum()
        for i in range(opts.n_attributes):
            probs.append(probs_by_att)

    if opts.probs=="entropy_test":
        probs=[]
        for i in range(opts.n_attributes):
            probs_by_att = np.ones(opts.n_values)
            probs_by_att[0]=1+(1*i)
            probs_by_att /= probs_by_att.sum()
            probs.append(probs_by_att)

    if opts.probs_attributes=="uniform":
        probs_attributes=[1]*opts.n_attributes

    if opts.probs_attributes=="uniform_indep":
        probs_attributes=[]
        probs_attributes=[0.2]*opts.n_attributes

    if opts.probs_attributes=="echelon":
        probs_attributes=[]
        for i in range(opts.n_attributes):
            #probs_attributes.append(1.-(0.2)*i)
            #probs_attributes.append(0.7+0.3/(i+1))
            probs_attributes=[1.,0.95,0.9,0.85]

    print("Probability by attribute is:",probs_attributes)


    compo_dataset = build_compo_dataset(opts.n_values, opts.n_attributes)

    if opts.split_proportion<1.:
        train_split = np.random.RandomState(opts.random_seed).choice(opts.n_values**opts.n_attributes,size=(int(opts.split_proportion*(opts.n_values**opts.n_attributes))),replace=False)
        test_split=[]

        for j in range(opts.n_values**opts.n_attributes):
          if j not in train_split:
            test_split.append(j)
        test_split = np.array(test_split)

    else:
        train_split=test_split=np.arange(opts.n_values**opts.n_attributes)

    train_loader = OneHotLoaderCompositionality(dataset=compo_dataset,split=train_split,n_values=opts.n_values, n_attributes=opts.n_attributes, batch_size=opts.batch_size,
                                                batches_per_epoch=opts.batches_per_epoch, probs=probs, probs_attributes=probs_attributes)

    # single batches with 1s on the diag
    #test_loader = TestLoaderCompositionality(dataset=compo_dataset,n_values=opts.n_values,n_attributes=opts.n_attributes)
    test_loader = TestLoaderCompositionality(dataset=compo_dataset,split=test_split,n_values=opts.n_values, n_attributes=opts.n_attributes, batch_size=opts.batch_size,
                                            batches_per_epoch=opts.batches_per_epoch, probs=probs, probs_attributes=probs_attributes)


    agents={}
    optim_params={}
    loss_weights={}
    speaker_parameters={}
    listener_parameters={}

    sender_hiddens=[128,1024,512,256,128,64,32,16,8]
    receiver_hiddens=[128,1024,512,256,128,64,32,16,8]

    for i in range(max(opts.N_speakers,opts.N_listeners)):

        agent=AgentBaselineCompositionality(vocab_size=opts.vocab_size,
                                                n_attributes=opts.n_attributes,
                                                n_values=opts.n_values,
                                                max_len=opts.max_len,
                                                embed_dim=opts.sender_embedding,
                                                sender_hidden_size=sender_hiddens[i],
                                                receiver_hidden_size=receiver_hiddens[i],
                                                sender_cell=opts.sender_cell,
                                                receiver_cell=opts.receiver_cell,
                                                sender_num_layers=opts.sender_num_layers,
                                                receiver_num_layers=opts.receiver_num_layers,
                                                force_eos=force_eos)

        agents["agent_{}".format(i)] = agent

        optim_params["agent_{}".format(i)] = {"length_cost":0.,
                                              "sender_entropy_coeff":opts.sender_entropy_coeff,
                                              "receiver_entropy_coeff":opts.receiver_entropy_coeff}

        loss_weights["agent_{}".format(i)]= {"self":0.,"cross":1.,"imitation":0.}

        if i<opts.N_speakers:
            speaker_parameters["agent_{}".format(i)]=list(agent.agent_sender.parameters()) + \
                                                       list(agent.sender_norm_h.parameters()) + \
                                                       list(agent.sender_norm_c.parameters()) + \
                                                       list(agent.hidden_to_output.parameters()) + \
                                                       list(agent.sender_embedding.parameters()) + \
                                                       list(agent.sender_cells.parameters())


        if i<opts.N_listeners:
            listener_parameters["agent_{}".format(i)]=list(agent.agent_receiver.parameters()) + \
                                  list(agent.receiver_cell.parameters()) + \
                                  list(agent.receiver_embedding.parameters())


    game_init = ForwardPassSpeakerMultiAgent(Agents=agents,
                                        n_attributes=opts.n_attributes,
                                        n_values=opts.n_values,
                                        loss_imitation=loss_message_imitation,
                                        optim_params=optim_params,
                                        device=device)

    game = DialogReinforceCompositionalityMultiAgent(Agents=agents,
                                                    n_attributes=opts.n_attributes,
                                                    n_values=opts.n_values,
                                                    loss_understanding=loss_understanding_compositionality,
                                                    optim_params=optim_params,
                                                    baseline_mode=opts.baseline_mode,
                                                    reward_mode=opts.reward_mode,
                                                    loss_weights=loss_weights,
                                                    device=device)

    # Optimizers
    optimizer_speaker={}
    optimizer_listener={}

    for i in range(max(opts.N_speakers,opts.N_listeners)):
        if i<opts.N_speakers:
            optimizer_speaker["agent_{}".format(i)] = core.build_optimizer(list(speaker_parameters["agent_{}".format(i)]),lr=opts.sender_lr)
        if i<opts.N_listeners:
            optimizer_listener["agent_{}".format(i)] = core.build_optimizer(list(listener_parameters["agent_{}".format(i)]),lr=opts.receiver_lr)


    if opts.K_random:
        Ks_speakers = [np.random.rand() for _ in range(opts.N_speakers)]
        Ks_listeners = [np.random.rand() for _ in range(opts.N_listeners)]
    else:
        Ks_speakers = [1]*opts.N_speakers
        Ks_listeners = [1]*opts.N_listeners

    "Create trainer"
    list_speakers=[i for i in range(opts.N_speakers)]
    list_listeners=[i for i in range(opts.N_listeners)]

    trainer_init = TrainerInitMultiagent(game=game_init, optimizer_speaker=optimizer_speaker
                                    list_speakers=list_speakers,save_probs_eval=opts.save_probs,\
                                    train_data=train_loader, \
                                    validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])

    trainer = TrainerDialogMultiAgentPair(game=game, optimizer_speaker=optimizer_speaker,optimizer_listener=optimizer_listener,\
                                                list_speakers=list_speakers,list_listeners=list_listeners,save_probs_eval=opts.save_probs,\
                                                N_listener_sampled = opts.N_listener_sampled,step_ratio=opts.step_ratio,train_data=train_loader, \
                                                Ks_speakers = Ks_speakers, Ks_listeners = Ks_listeners, \
                                                validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])


    # Create save dir
    if not path.exists(opts.dir_save):
        os.system("mkdir {}".format(opts.dir_save))
        os.system("mkdir -p {}/models {}/training_info {}/messages {}/accuracy {}/test".format(opts.dir_save,opts.dir_save,opts.dir_save,opts.dir_save,opts.dir_save))

    # Save train split
    np.save(opts.dir_save+'/training_info/train_split.npy', train_split)
    np.save(opts.dir_save+'/training_info/test_split.npy', test_split)
    np.save(opts.dir_save+'/training_info/Ks_speakers.npy', Ks_speakers)
    np.save(opts.dir_save+'/training_info/Ks_listeners.npy', Ks_listeners)



    # Main losses
    training_losses=[]
    eval_losses=[]
    training_entropy=[]
    training_loss_cross=[]
    eval_loss_cross=[]

    for epoch in range(10):

        print("Epoch: "+str(epoch))
        if epoch%10==0:
            if opts.N_speakers<4:
                compute_similarity=True
            else:
                compute_similarity=opts.compute_similarity
        else:
            compute_similarity=opts.compute_similarity

        # Train

        list_train_loss,list_train_rest = trainer_init.train(n_epochs=1)

        # Eval
        eval_loss,eval_rest = trainer.eval()

        print("Train")
        if epoch==0:
            messages=[np.zeros((opts.n_values**opts.n_attributes,opts.max_len)) for _ in range(max(opts.N_speakers,opts.N_listeners))]
        messages,accuracy_vectors, similarity_messages = dump_compositionality_multiagent(trainer.game,compo_dataset,train_split,list_speakers,list_listeners, opts.n_attributes, opts.n_values, device,epoch,past_messages=messages,compute_similarity=compute_similarity)
        np_messages = {agent:convert_messages_to_numpy(messages[agent]) for agent in messages}

        print("Test")
        if epoch==0:
            messages_test=[np.zeros((opts.n_values**opts.n_attributes,opts.max_len)) for _ in range(max(opts.N_speakers,opts.N_listeners))]
        messages_test,accuracy_vectors_test, similarity_messages_test = dump_compositionality_multiagent(trainer.game,compo_dataset,test_split,list_speakers,list_listeners, opts.n_attributes, opts.n_values, device,epoch,past_messages=messages_test,compute_similarity=compute_similarity)
        np_messages_test = {agent:convert_messages_to_numpy(messages_test[agent]) for agent in messages_test}

        # Save models
        if epoch%20==0:
            for agent in agents:
                torch.save(agents[agent].state_dict(), f"{opts.dir_save}/models/{agent}_weights_{epoch}.pth")


    for epoch in range(opts.n_epochs):

        print("Epoch: "+str(epoch))
        if epoch%10==0:
            if opts.N_speakers<4:
                compute_similarity=True
            else:
                compute_similarity=opts.compute_similarity
        else:
            compute_similarity=opts.compute_similarity

        # Train

        list_train_loss,list_train_rest = trainer.train(n_epochs=1)

        # Eval
        eval_loss,eval_rest = trainer.eval()

        # Store results
        training_losses.append(list_train_loss[-1])
        eval_losses.append(eval_loss)

        training_entropy=[-1]*max(opts.N_speakers,opts.N_listeners)
        training_loss_cross=[-1]*max(opts.N_speakers,opts.N_listeners)
        eval_loss_cross=[-1]*max(opts.N_speakers,opts.N_listeners)

        for i in range(max(opts.N_speakers,opts.N_listeners)):
            if "sender_entropy_{}".format(i) in list_train_rest[-1]:
                training_entropy[i]=list_train_rest[-1]["sender_entropy_{}".format(i)]
            if "loss_{}".format(i) in list_train_rest[-1]:
                training_loss_cross[i]=list_train_rest[-1]["loss_{}".format(i)]
            if "loss_{}".format(i) in eval_rest:
                eval_loss_cross[i] = eval_rest["loss_{}".format(i)]

        print("Train")
        if epoch==0:
            messages=[np.zeros((opts.n_values**opts.n_attributes,opts.max_len)) for _ in range(max(opts.N_speakers,opts.N_listeners))]
        messages,accuracy_vectors, similarity_messages = dump_compositionality_multiagent(trainer.game,compo_dataset,train_split,list_speakers,list_listeners, opts.n_attributes, opts.n_values, device,epoch,past_messages=messages,compute_similarity=compute_similarity)
        np_messages = {agent:convert_messages_to_numpy(messages[agent]) for agent in messages}

        print("Test")
        if epoch==0:
            messages_test=[np.zeros((opts.n_values**opts.n_attributes,opts.max_len)) for _ in range(max(opts.N_speakers,opts.N_listeners))]
        messages_test,accuracy_vectors_test, similarity_messages_test = dump_compositionality_multiagent(trainer.game,compo_dataset,test_split,list_speakers,list_listeners, opts.n_attributes, opts.n_values, device,epoch,past_messages=messages_test,compute_similarity=compute_similarity)
        np_messages_test = {agent:convert_messages_to_numpy(messages_test[agent]) for agent in messages_test}

        # Save models
        if epoch%20==0:
            for agent in agents:
                torch.save(agents[agent].state_dict(), f"{opts.dir_save}/models/{agent}_weights_{epoch}.pth")

        # Save training info
        if epoch%10==0:
            np.save(opts.dir_save+'/training_info/training_loss_{}.npy'.format(epoch), training_losses)
            np.save(opts.dir_save+'/training_info/eval_loss_{}.npy'.format(epoch), eval_losses)
            np.save(opts.dir_save+'/training_info/training_entropy_{}.npy'.format(epoch), training_entropy)
            np.save(opts.dir_save+'/training_info/training_loss_cross_{}.npy'.format(epoch), training_loss_cross)
            np.save(opts.dir_save+'/training_info/eval_loss_cross_{}.npy'.format(epoch), eval_loss_cross)
            np.save(opts.dir_save+'/training_info/similarity_languages_{}.npy'.format(epoch), similarity_messages)
            np.save(opts.dir_save+'/training_info/similarity_languages_test_{}.npy'.format(epoch), similarity_messages_test)

        # Save accuracy/message results
        messages_to_be_saved = np.stack([fill_to_max_len(np_messages[agent],opts.max_len) for agent in np_messages])
        accuracy_vectors_to_be_saved = np.zeros((len(list_speakers),len(list_listeners),len(train_split),opts.n_attributes))
        for i,agent_speaker in enumerate(accuracy_vectors):
            for j,agent_listener in enumerate(accuracy_vectors[agent_speaker]):
                accuracy_vectors_to_be_saved[i,j,:,:] = accuracy_vectors[agent_speaker][agent_listener]


        np.save(opts.dir_save+'/messages/messages_{}.npy'.format(epoch), messages_to_be_saved)
        np.save(opts.dir_save+'/accuracy/accuracy_{}.npy'.format(epoch), accuracy_vectors_to_be_saved)

        # Test set
        messages_test_to_be_saved = np.stack([fill_to_max_len(np_messages_test[agent],opts.max_len) for agent in np_messages_test])
        accuracy_vectors_test_to_be_saved = np.zeros((len(list_speakers),len(list_listeners),len(test_split),opts.n_attributes))
        for i,agent_speaker in enumerate(accuracy_vectors_test):
            for j,agent_listener in enumerate(accuracy_vectors_test[agent_speaker]):
                accuracy_vectors_test_to_be_saved[i,j,:,:] = accuracy_vectors_test[agent_speaker][agent_listener]

        np.save(opts.dir_save+'/test/messages_test_{}.npy'.format(epoch), messages_test_to_be_saved)
        np.save(opts.dir_save+'/test/accuracy_test_{}.npy'.format(epoch), accuracy_vectors_test_to_be_saved)

    core.close()
Ejemplo n.º 3
0
def main(params):
    print(torch.cuda.is_available())
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1


    compo_dataset = build_compo_dataset(opts.n_values, opts.n_attributes)

    split = np.sort(np.load(opts.dataset_split))

    with open(opts.agents_weights, "rb") as fp:
        agents_weights = pickle.load(fp)


    agents={}

    for i in range(len(agents_weights)):


        agent=AgentBaselineCompositionality(vocab_size=opts.vocab_size,
                                                n_attributes=opts.n_attributes,
                                                n_values=opts.n_values,
                                                max_len=opts.max_len,
                                                embed_dim=opts.sender_embedding,
                                                sender_hidden_size=opts.sender_hidden,
                                                receiver_hidden_size=opts.receiver_hidden,
                                                sender_cell=opts.sender_cell,
                                                receiver_cell=opts.receiver_cell,
                                                sender_num_layers=opts.sender_num_layers,
                                                receiver_num_layers=opts.receiver_num_layers,
                                                force_eos=force_eos)

        agent.load_state_dict(torch.load(agents_weights[i],map_location=torch.device('cpu')))
        agent.to(device)
        agents["agent_{}".format(i)] = agent

        #(agent,compo_dataset,split,n_sampling,vocab_size,max_len,device)

    if opts.by_position:

        policies = estimate_policy(agents=agents,
                                   compo_dataset=compo_dataset,
                                   split=split,
                                   n_sampling=opts.n_sampling,
                                   vocab_size=opts.vocab_size,
                                   max_len=opts.max_len,
                                   n_attributes=opts.n_attributes,
                                   n_values=opts.n_values,
                                   device=device,
                                   by_position=True)

        for agent in policies:
            mean_entropy=0.
            for i in range(np.shape(policies[agent])[0]):
                for j in range(np.shape(policies[agent])[1]):
                  probs=[policies[agent][i,j,k] for k in range(np.shape(policies[agent])[2])]
                  mean_entropy+=entropy(probs,base=10)
            mean_entropy/=(np.shape(policies[agent])[0]*np.shape(policies[agent])[1])

            np.save(opts.dir_save+'/training_info/entropy_by_pos_{}.npy'.format(agent),np.array(mean_entropy))

        KL_mat = np.zeros((len(policies)-1,len(policies)-1))
        L2_mat = np.zeros((len(policies)-1,len(policies)-1))

        for a1,agent_1 in enumerate(policies):
            for a2,agent_2 in enumerate(policies):
              if agent_1!="mean_policy" and agent_2!="mean_policy":
                  mean_KL=0.
                  mean_L2=0.
                  for i in range(len(policies[agent_1])):
                      for j in range(np.shape(policies[agent_1])[1]):
                        probs_1=[policies[agent_1][i,j,k] for k in range(np.shape(policies[agent_1])[2])]
                        probs_2=[policies[agent_2][i,j,k] for k in range(np.shape(policies[agent_2])[2])]
                        mean_KL+=entropy(np.array(probs_1)+1e-16,qk=np.array(probs_2)+1e-16,base=10)
                        mean_L2+=np.sqrt(np.sum((np.array(probs_1)-np.array(probs_2))**2))
                  mean_KL/=(np.shape(policies[agent_1])[0]*np.shape(policies[agent_1])[1])
                  mean_L2/=(np.shape(policies[agent_1])[0]*np.shape(policies[agent_1])[1])
                  KL_mat[a1,a2]=mean_KL
                  L2_mat[a1,a2]=mean_L2

        np.save(opts.dir_save+'/training_info/KLdiv.npy',np.array(KL_mat))
        np.save(opts.dir_save+'/training_info/L2.npy',np.array(L2_mat))

        KL_mean_mat = np.zeros((len(policies)-1))
        L2_mean_mat = np.zeros((len(policies)-1))

        for a1,agent_1 in enumerate(policies):
            for a2,agent_2 in enumerate(policies):
              if agent_1=="mean_policy" and agent_2!="mean_policy":
                  mean_KL=0.
                  mean_L2=0.
                  for i in range(len(policies[agent_1])):
                      for j in range(np.shape(policies[agent_1])[1]):
                        probs_1=[policies[agent_1][i,j,k] for k in range(np.shape(policies[agent_1])[2])]
                        probs_2=[policies[agent_2][i,j,k] for k in range(np.shape(policies[agent_2])[2])]
                        mean_KL+=entropy(np.array(probs_1)+1e-16,qk=np.array(probs_2)+1e-16,base=10)
                        mean_L2+=np.sqrt(np.sum((np.array(probs_1)-np.array(probs_2))**2))
                  mean_KL/=(np.shape(policies[agent_1])[0]*np.shape(policies[agent_1])[1])
                  mean_L2/=(np.shape(policies[agent_1])[0]*np.shape(policies[agent_1])[1])
                  KL_mean_mat[a2]=mean_KL
                  L2_mean_mat[a2]=mean_L2

        np.save(opts.dir_save+'/training_info/KLdiv_meanpol.npy',np.array(KL_mean_mat))
        np.save(opts.dir_save+'/training_info/L2_meanpol.npy',np.array(L2_mean_mat))


    else:
        policies = estimate_policy(agents=agents,
                                   compo_dataset=compo_dataset,
                                   split=split,
                                   n_sampling=opts.n_sampling,
                                   vocab_size=opts.vocab_size,
                                   max_len=opts.max_len,
                                   n_attributes=opts.n_attributes,
                                   n_values=opts.n_values,
                                   device=device)

        for agent in policies:
            mean_entropy=0.
            for i in range(len(policies[agent])):
              probs=[policies[agent][i][m] for m in policies[agent][i]]
              mean_entropy+=entropy(probs,base=10)
            mean_entropy/=len(policies[agent])

            np.save(opts.dir_save+'/training_info/entropy_{}.npy'.format(agent),np.array(mean_entropy))

    compositionality = estimate_compositionality(agents=agents,
                                                   compo_dataset=compo_dataset,
                                                   split=split,
                                                   n_sampling=opts.n_sampling,
                                                   n_indices = 1000,
                                                   vocab_size=opts.vocab_size,
                                                   max_len=opts.max_len,
                                                   n_attributes=opts.n_attributes,
                                                   n_values=opts.n_values,
                                                   device=device)

    np.save(opts.dir_save+'/training_info/compositionality.npy',np.array(compositionality))


    core.close()
Ejemplo n.º 4
0
def main(params):
    print(torch.cuda.is_available())
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    # Distribution of the inputs
    if opts.probs=="uniform":
        probs=[]
        probs_by_att = np.ones(opts.n_values)
        probs_by_att /= probs_by_att.sum()
        for i in range(opts.n_attributes):
            probs.append(probs_by_att)

    if opts.probs=="entropy_test":
        probs=[]
        for i in range(opts.n_attributes):
            probs_by_att = np.ones(opts.n_values)
            probs_by_att[0]=1+(1*i)
            probs_by_att /= probs_by_att.sum()
            probs.append(probs_by_att)

    if opts.probs_attributes=="uniform":
        probs_attributes=[1]*opts.n_attributes

    if opts.probs_attributes=="uniform_indep":
        probs_attributes=[]
        probs_attributes=[0.2]*opts.n_attributes

    if opts.probs_attributes=="echelon":
        probs_attributes=[]
        for i in range(opts.n_attributes):
            #probs_attributes.append(1.-(0.2)*i)
            #probs_attributes.append(0.7+0.3/(i+1))
            probs_attributes=[1.,0.95,0.9,0.85]

    print("Probability by attribute is:",probs_attributes)


    compo_dataset = build_compo_dataset(opts.n_values, opts.n_attributes)

    train_split = np.random.RandomState(opts.random_seed).choice(opts.n_values**opts.n_attributes,size=(int(opts.split_proportion*(opts.n_values**opts.n_attributes))),replace=False)
    test_split=[]

    for j in range(opts.n_values**opts.n_attributes):
      if j not in train_split:
        test_split.append(j)
    test_split = np.array(test_split)

    train_loader = OneHotLoaderCompositionality(dataset=compo_dataset,split=train_split,n_values=opts.n_values, n_attributes=opts.n_attributes, batch_size=opts.batch_size,
                                                batches_per_epoch=opts.batches_per_epoch, probs=probs, probs_attributes=probs_attributes)

    # single batches with 1s on the diag
    #test_loader = TestLoaderCompositionality(dataset=compo_dataset,n_values=opts.n_values,n_attributes=opts.n_attributes)
    test_loader = TestLoaderCompositionality(dataset=compo_dataset,split=test_split,n_values=opts.n_values, n_attributes=opts.n_attributes, batch_size=opts.batch_size,
                                            batches_per_epoch=opts.batches_per_epoch, probs=probs, probs_attributes=probs_attributes)

    agent_1=AgentBaselineCompositionality(vocab_size=opts.vocab_size,
                                            n_attributes=opts.n_attributes,
                                            n_values=opts.n_values,
                                            max_len=opts.max_len,
                                            embed_dim=opts.sender_embedding,
                                            sender_hidden_size=opts.sender_hidden,
                                            receiver_hidden_size=opts.receiver_hidden,
                                            sender_cell=opts.sender_cell,
                                            receiver_cell=opts.receiver_cell,
                                            sender_num_layers=opts.sender_num_layers,
                                            receiver_num_layers=opts.receiver_num_layers,
                                            force_eos=force_eos)

    agent_2=AgentBaselineCompositionality(vocab_size=opts.vocab_size,
                                            n_attributes=opts.n_attributes,
                                            n_values=opts.n_values,
                                            max_len=opts.max_len,
                                            embed_dim=opts.sender_embedding,
                                            sender_hidden_size=opts.sender_hidden,
                                            receiver_hidden_size=opts.receiver_hidden,
                                            sender_cell=opts.sender_cell,
                                            receiver_cell=opts.receiver_cell,
                                            sender_num_layers=opts.sender_num_layers,
                                            receiver_num_layers=opts.receiver_num_layers,
                                            force_eos=force_eos)


    "Define game"

    optim_params={"length_cost":0.,
                  "sender_entropy_coeff_1":opts.sender_entropy_coeff,
                  "receiver_entropy_coeff_1":opts.receiver_entropy_coeff,
                  "sender_entropy_coeff_2":opts.sender_entropy_coeff,
                  "receiver_entropy_coeff_2":opts.receiver_entropy_coeff}

    if opts.optim_mode=="cross":
        loss_weights={"self":0.,"cross":1.,"imitation":0.}
    elif opts.optim_mode=="cross+self":
        loss_weights={"self":1.,"cross":1.,"imitation":0.}
    else:
        loss_weights={"self":1.,"cross":1.,"imitation":1.}
    #loss_weights={"self":opts.self_weight,"cross":opts.cross_weight,"imitation":opts.imitation_weight}

    game = DialogReinforceCompositionality(Agent_1=agent_1,
                                            Agent_2=agent_2,
                                            n_attributes=opts.n_attributes,
                                            n_values=opts.n_values,
                                            loss_understanding=loss_understanding_compositionality,
                                            optim_params=optim_params,
                                            baseline_mode=opts.baseline_mode,
                                            reward_mode=opts.reward_mode,
                                            loss_weights=loss_weights,
                                            device=device)

    "Create optimizers"
    if opts.model=="expe_1":
        optimizer = core.build_optimizer(list(game.parameters()))

        trainer = TrainerDialogCompositionality(n_attributes=opts.n_attributes,n_values=opts.n_values,game=game, optimizer=optimizer, train_data=train_loader,
                                                validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])

    elif opts.model=="expe_lr":

        speaker_parameters = list(game.agent_1.agent_sender.parameters()) + \
                               list(game.agent_1.sender_norm_h.parameters()) + \
                               list(game.agent_1.sender_norm_c.parameters()) + \
                               list(game.agent_1.hidden_to_output.parameters()) + \
                               list(game.agent_1.sender_embedding.parameters()) + \
                               list(game.agent_1.sender_cells.parameters()) + \
                               list(game.agent_2.agent_sender.parameters()) + \
                               list(game.agent_2.sender_norm_h.parameters()) + \
                               list(game.agent_2.sender_norm_c.parameters()) + \
                               list(game.agent_2.hidden_to_output.parameters()) + \
                               list(game.agent_2.sender_embedding.parameters()) + \
                               list(game.agent_2.sender_cells.parameters())

        listener_parameters = list(game.agent_1.agent_receiver.parameters()) + \
                              list(game.agent_1.receiver_cell.parameters()) + \
                              list(game.agent_1.receiver_embedding.parameters()) + \
                              list(game.agent_2.agent_receiver.parameters()) + \
                              list(game.agent_2.receiver_cell.parameters()) + \
                              list(game.agent_2.receiver_embedding.parameters())

        # SGD
        #optimizer_speaker=torch.optim.SGD(speaker_parameters, lr=opts.sender_lr, momentum=0.9,nesterov=False)
        #optimizer_listener=torch.optim.SGD(listener_parameters, lr=opts.receiver_lr, momentum=0.9,nesterov=False)
        optimizer_speaker = core.build_optimizer(list(speaker_parameters),lr=opts.sender_lr)
        optimizer_listener = core.build_optimizer(list(listener_parameters),lr=opts.receiver_lr)


        "Create trainer"
        trainer = TrainerDialog(game=game, optimizer=optimizer, train_data=train_loader, \
                                validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])

    elif opts.model=="expe_step":

        speaker_parameters = list(game.agent_1.agent_sender.parameters()) + \
                               list(game.agent_1.sender_norm_h.parameters()) + \
                               list(game.agent_1.sender_norm_c.parameters()) + \
                               list(game.agent_1.hidden_to_output.parameters()) + \
                               list(game.agent_1.sender_embedding.parameters()) + \
                               list(game.agent_1.sender_cells.parameters()) + \
                               list(game.agent_2.agent_sender.parameters()) + \
                               list(game.agent_2.sender_norm_h.parameters()) + \
                               list(game.agent_2.sender_norm_c.parameters()) + \
                               list(game.agent_2.hidden_to_output.parameters()) + \
                               list(game.agent_2.sender_embedding.parameters()) + \
                               list(game.agent_2.sender_cells.parameters())

        listener_parameters = list(game.agent_1.agent_receiver.parameters()) + \
                              list(game.agent_1.receiver_cell.parameters()) + \
                              list(game.agent_1.receiver_embedding.parameters()) + \
                              list(game.agent_2.agent_receiver.parameters()) + \
                              list(game.agent_2.receiver_cell.parameters()) + \
                              list(game.agent_2.receiver_embedding.parameters())

        # SGD
        #optimizer_speaker=torch.optim.SGD(speaker_parameters, lr=opts.sender_lr, momentum=0.9,nesterov=False)
        #optimizer_listener=torch.optim.SGD(listener_parameters, lr=opts.receiver_lr, momentum=0.9,nesterov=False)
        optimizer_speaker = core.build_optimizer(list(speaker_parameters),lr=opts.sender_lr)
        optimizer_listener = core.build_optimizer(list(listener_parameters),lr=opts.receiver_lr)


        "Create trainer"
        #trainer = TrainerDialog(game=game, optimizer=optimizer, train_data=train_loader, \
        #                        validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])
        trainer = TrainerDialogAsymStep(game=game, optimizer_speaker=optimizer_speaker,optimizer_listener=optimizer_listener,\
                                        N_speaker=opts.N_speaker,N_listener=opts.N_listener,train_data=train_loader, \
                                        validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])

    elif opts.model=="expe_single_listener":

        game = DialogReinforceCompositionalitySingleListener(Agent_1=agent_1,
                                                            Agent_2=agent_2,
                                                            n_attributes=opts.n_attributes,
                                                            n_values=opts.n_values,
                                                            loss_understanding=loss_understanding_compositionality,
                                                            optim_params=optim_params,
                                                            baseline_mode=opts.baseline_mode,
                                                            reward_mode=opts.reward_mode,
                                                            loss_weights=loss_weights,
                                                            device=device)

        speaker_parameters = list(game.agent_1.agent_sender.parameters()) + \
                               list(game.agent_1.sender_norm_h.parameters()) + \
                               list(game.agent_1.sender_norm_c.parameters()) + \
                               list(game.agent_1.hidden_to_output.parameters()) + \
                               list(game.agent_1.sender_embedding.parameters()) + \
                               list(game.agent_1.sender_cells.parameters()) + \
                               list(game.agent_2.agent_sender.parameters()) + \
                               list(game.agent_2.sender_norm_h.parameters()) + \
                               list(game.agent_2.sender_norm_c.parameters()) + \
                               list(game.agent_2.hidden_to_output.parameters()) + \
                               list(game.agent_2.sender_embedding.parameters()) + \
                               list(game.agent_2.sender_cells.parameters())

        listener_parameters = list(game.agent_1.agent_receiver.parameters()) + \
                              list(game.agent_1.receiver_cell.parameters()) + \
                              list(game.agent_1.receiver_embedding.parameters())

        # SGD
        #optimizer_speaker=torch.optim.SGD(speaker_parameters, lr=opts.sender_lr, momentum=0.9,nesterov=False)
        #optimizer_listener=torch.optim.SGD(listener_parameters, lr=opts.receiver_lr, momentum=0.9,nesterov=False)
        optimizer_speaker = core.build_optimizer(list(speaker_parameters),lr=opts.sender_lr)
        optimizer_listener = core.build_optimizer(list(listener_parameters),lr=opts.receiver_lr)


        "Create trainer"
        #trainer = TrainerDialog(game=game, optimizer=optimizer, train_data=train_loader, \
        #                        validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])
        trainer = TrainerDialogAsymStep(game=game, optimizer_speaker=optimizer_speaker,optimizer_listener=optimizer_listener,\
                                        N_speaker=opts.N_speaker,N_listener=opts.N_listener,train_data=train_loader, \
                                        validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])

    else:
        raise("Model not indicated")

    # Create save dir
    if not path.exists(opts.dir_save):
        os.system("mkdir {}".format(opts.dir_save))
        os.system("mkdir -p {}/models {}/training_info {}/messages {}/accuracy {}/test".format(opts.dir_save,opts.dir_save,opts.dir_save,opts.dir_save,opts.dir_save))

    # Save train split
    np.save(opts.dir_save+'/training_info/train_split.npy', train_split)
    np.save(opts.dir_save+'/training_info/test_split.npy', test_split)


    # Main losses
    training_losses=[]
    eval_losses=[]
    training_entropy_1=[]
    training_entropy_2=[]
    training_loss_12=[]
    eval_loss_12=[]
    training_loss_21=[]
    eval_loss_21=[]

    # Specific losses
    training_loss_self_11=[]
    training_loss_cross_12=[]
    training_loss_imitation_12=[]
    training_loss_self_22=[]
    training_loss_cross_21=[]
    training_loss_imitation_21=[]
    eval_loss_self_11=[]
    eval_loss_cross_12=[]
    eval_loss_imitation_12=[]
    eval_loss_self_22=[]
    eval_loss_cross_21=[]
    eval_loss_imitation_21=[]

    # Linguistic
    similarity_languages=[]
    similarity_languages_test=[]


    for epoch in range(int(opts.n_epochs)):

        print("Epoch: "+str(epoch))
        if epoch%10==0:
            compute_similarity=True
        else:
            compute_similarity=opts.print_metrics

        # Train
        list_train_loss,list_train_rest = trainer.train(n_epochs=1)

        # Eval
        eval_loss,eval_rest = trainer.eval()

        # Store results
        training_losses.append(list_train_loss[-1])
        eval_losses.append(eval_loss)
        training_entropy_1.append(list_train_rest[-1]["sender_entropy_1"])
        training_entropy_2.append(list_train_rest[-1]["sender_entropy_2"])
        training_loss_12.append(list_train_rest[-1]["loss_1"])
        eval_loss_12.append(eval_rest["loss_1"])
        training_loss_21.append(list_train_rest[-1]["loss_2"])
        eval_loss_21.append(eval_rest["loss_2"])
        training_loss_self_11.append(list_train_rest[-1]["loss_self_11"])
        training_loss_cross_12.append(list_train_rest[-1]["loss_cross_12"])
        training_loss_self_22.append(list_train_rest[-1]["loss_self_22"])
        training_loss_cross_21.append(list_train_rest[-1]["loss_cross_21"])
        eval_loss_self_11.append(eval_rest["loss_self_11"])
        eval_loss_cross_12.append(eval_rest["loss_cross_12"])
        eval_loss_self_22.append(eval_rest["loss_self_22"])
        eval_loss_cross_21.append(eval_rest["loss_cross_21"])

        if opts.print_metrics:
            print("Train")
        if epoch==0:
            messages_1=messages_2=np.zeros((opts.n_values**opts.n_attributes,opts.max_len))
        messages_1, messages_2,acc_vec_1, acc_vec_2, acc_vec_11, acc_vec_22, similarity_messages = dump_compositionality(trainer.game,compo_dataset,train_split, opts.n_attributes, opts.n_values, device, False,epoch,past_messages_1=messages_1,past_messages_2=messages_2,compute_similarity=compute_similarity,print_metrics=opts.print_metrics)
        np_messages_1 = convert_messages_to_numpy(messages_1)
        np_messages_2 = convert_messages_to_numpy(messages_2)
        similarity_languages.append(similarity_messages)

        if opts.print_metrics:
            print("Test")
        if epoch==0:
            messages_1_test=messages_2_test=np.zeros((opts.n_values**opts.n_attributes,opts.max_len))
        messages_1_test, messages_2_test,acc_vec_1_test, acc_vec_2_test, acc_vec_11_test, acc_vec_22_test, similarity_messages_test = dump_compositionality(trainer.game,compo_dataset,test_split, opts.n_attributes, opts.n_values, device, False,epoch,past_messages_1=messages_1_test,past_messages_2=messages_2_test,compute_similarity=compute_similarity,,print_metrics=opts.print_metrics)
        np_messages_1_test = convert_messages_to_numpy(messages_1_test)
        np_messages_2_test = convert_messages_to_numpy(messages_2_test)
        similarity_languages_test.append(similarity_messages_test)

        #game.optim_params["sender_entropy_coeff_1"]=opts.sender_entropy_coeff-(opts.sender_entropy_coeff+0.05)*np.mean(acc_vec_11)
        #game.optim_params["sender_entropy_coeff_2"]=opts.sender_entropy_coeff-(opts.sender_entropy_coeff+0.05)*np.mean(acc_vec_22)


        # Save models
        if epoch%20==0:
            torch.save(agent_1.state_dict(), f"{opts.dir_save}/models/agent_1_weights_{epoch}.pth")
            torch.save(agent_2.state_dict(), f"{opts.dir_save}/models/agent_2_weights_{epoch}.pth")

        # Save training info
        if epoch%10==0:
            np.save(opts.dir_save+'/training_info/training_loss_{}.npy'.format(epoch), training_losses)
            np.save(opts.dir_save+'/training_info/eval_loss_{}.npy'.format(epoch), eval_losses)
            np.save(opts.dir_save+'/training_info/training_entropy_1_{}.npy'.format(epoch), training_entropy_1)
            np.save(opts.dir_save+'/training_info/training_entropy_2_{}.npy'.format(epoch), training_entropy_2)
            np.save(opts.dir_save+'/training_info/training_loss_12_{}.npy'.format(epoch), training_loss_12)
            np.save(opts.dir_save+'/training_info/eval_loss_12_{}.npy'.format(epoch), eval_loss_12)
            np.save(opts.dir_save+'/training_info/training_loss_21_{}.npy'.format(epoch), training_loss_21)
            np.save(opts.dir_save+'/training_info/eval_loss_21_{}.npy'.format(epoch), eval_loss_21)
            np.save(opts.dir_save+'/training_info/training_loss_self_11_{}.npy'.format(epoch), training_loss_self_11)
            np.save(opts.dir_save+'/training_info/training_loss_cross_12_{}.npy'.format(epoch), training_loss_cross_12)
            np.save(opts.dir_save+'/training_info/training_loss_imitation_12_{}.npy'.format(epoch), training_loss_imitation_12)
            np.save(opts.dir_save+'/training_info/training_loss_self_22_{}.npy'.format(epoch), training_loss_self_22)
            np.save(opts.dir_save+'/training_info/training_loss_cross_21_{}.npy'.format(epoch), training_loss_cross_21)
            np.save(opts.dir_save+'/training_info/training_loss_imitation_21_{}.npy'.format(epoch), training_loss_imitation_21)
            np.save(opts.dir_save+'/training_info/eval_loss_self_11_{}.npy'.format(epoch), eval_loss_self_11)
            np.save(opts.dir_save+'/training_info/eval_loss_cross_12_{}.npy'.format(epoch), eval_loss_cross_12)
            np.save(opts.dir_save+'/training_info/eval_loss_imitation_12_{}.npy'.format(epoch), eval_loss_imitation_12)
            np.save(opts.dir_save+'/training_info/eval_loss_self_22_{}.npy'.format(epoch), eval_loss_self_22)
            np.save(opts.dir_save+'/training_info/eval_loss_cross_21_{}.npy'.format(epoch), eval_loss_cross_21)
            np.save(opts.dir_save+'/training_info/eval_loss_imitation_21_{}.npy'.format(epoch), eval_loss_imitation_21)
            np.save(opts.dir_save+'/training_info/similarity_languages_{}.npy'.format(epoch), similarity_languages)
            np.save(opts.dir_save+'/training_info/similarity_languages_test_{}.npy'.format(epoch), similarity_languages_test)

        # Save accuracy/message results
        np.save(opts.dir_save+'/messages/agent_1_messages_{}.npy'.format(epoch), np_messages_1)
        np.save(opts.dir_save+'/messages/agent_2_messages_{}.npy'.format(epoch), np_messages_2)
        np.save(opts.dir_save+'/accuracy/12_accuracy_{}.npy'.format(epoch), acc_vec_1)
        np.save(opts.dir_save+'/accuracy/21_accuracy_{}.npy'.format(epoch), acc_vec_2)
        np.save(opts.dir_save+'/accuracy/11_accuracy_{}.npy'.format(epoch), acc_vec_11)
        np.save(opts.dir_save+'/accuracy/22_accuracy_{}.npy'.format(epoch), acc_vec_22)

        # Test set
        np.save(opts.dir_save+'/test/agent_1_messages_test_{}.npy'.format(epoch), np_messages_1_test)
        np.save(opts.dir_save+'/test/agent_2_messages_test_{}.npy'.format(epoch), np_messages_2_test)
        np.save(opts.dir_save+'/test/12_accuracy_test_{}.npy'.format(epoch), acc_vec_1_test)
        np.save(opts.dir_save+'/test/21_accuracy_test_{}.npy'.format(epoch), acc_vec_2_test)
        np.save(opts.dir_save+'/test/11_accuracy_test_{}.npy'.format(epoch), acc_vec_11_test)
        np.save(opts.dir_save+'/test/22_accuracy_test_{}.npy'.format(epoch), acc_vec_22_test)

    core.close()
Ejemplo n.º 5
0
def main(params):
    opts = get_params(params)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == "uniform":
        probs = []
        probs_by_att = np.ones(opts.n_values)
        probs_by_att /= probs_by_att.sum()
        for i in range(opts.n_attributes):
            probs.append(probs_by_att)
        probs_attributes = [1] * opts.n_attributes

    agent_1 = AgentBaseline2(vocab_size=opts.vocab_size,
                             n_features=opts.n_features,
                             max_len=opts.max_len,
                             embed_dim=opts.sender_embedding,
                             sender_hidden_size=opts.sender_hidden,
                             receiver_hidden_size=opts.receiver_hidden,
                             sender_cell=opts.sender_cell,
                             receiver_cell=opts.receiver_cell,
                             sender_num_layers=opts.sender_num_layers,
                             receiver_num_layers=opts.receiver_num_layers,
                             force_eos=force_eos)

    agent_1.load_state_dict(
        torch.load(opts.agent_1_weights, map_location=torch.device('cpu')))
    agent_1.to(device)

    agent_2 = AgentBaseline2(vocab_size=opts.vocab_size,
                             n_features=opts.n_features,
                             max_len=opts.max_len,
                             embed_dim=opts.sender_embedding,
                             sender_hidden_size=opts.sender_hidden,
                             receiver_hidden_size=opts.receiver_hidden,
                             sender_cell=opts.sender_cell,
                             receiver_cell=opts.receiver_cell,
                             sender_num_layers=opts.sender_num_layers,
                             receiver_num_layers=opts.receiver_num_layers,
                             force_eos=force_eos)

    agent_2.load_state_dict(
        torch.load(opts.agent_2_weights, map_location=torch.device('cpu')))
    agent_2.to(device)

    policy_1 = estimate_policy(agent_1, opts.n_sampling, opts.n_features,
                               opts.vocab_size, opts.max_len, device)
    policy_2 = estimate_policy(agent_2, opts.n_sampling, opts.n_features,
                               opts.vocab_size, opts.max_len, device)

    #def L2_sim(p, q):
    #    l2=(p-q)**2
    #    l2=np.sum(l2,axis=2)
    #    return np.mean(l2)

    #l2=L2_sim(policy_1.cpu().numpy(),policy_2.cpu().numpy())
    np.save(opts.dir_save + '/training_info/policy_1.npy',
            policy_1.cpu().numpy())
    np.save(opts.dir_save + '/training_info/policy_2.npy',
            policy_2.cpu().numpy())

    core.close()
Ejemplo n.º 6
0
def main(params):
    opts = get_params(params)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == "uniform":
        probs = []
        probs_by_att = np.ones(opts.n_values)
        probs_by_att /= probs_by_att.sum()
        for i in range(opts.n_attributes):
            probs.append(probs_by_att)
        probs_attributes = [1] * opts.n_attributes

    if opts.compositionality:

        compo_dataset = build_compo_dataset(opts.n_values, opts.n_attributes)

        train_split = np.load(opts.train_split)
        test_split = np.load(opts.test_split)

        train_loader = OneHotLoaderCompositionality(
            dataset=compo_dataset,
            split=train_split,
            n_values=opts.n_values,
            n_attributes=opts.n_attributes,
            batch_size=opts.batch_size,
            batches_per_epoch=opts.batches_per_epoch,
            probs=probs,
            probs_attributes=probs_attributes)

        # single batches with 1s on the diag
        #test_loader = TestLoaderCompositionality(dataset=compo_dataset,n_values=opts.n_values,n_attributes=opts.n_attributes)
        test_loader = TestLoaderCompositionality(
            dataset=compo_dataset,
            split=test_split,
            n_values=opts.n_values,
            n_attributes=opts.n_attributes,
            batch_size=opts.batch_size,
            batches_per_epoch=opts.batches_per_epoch,
            probs=probs,
            probs_attributes=probs_attributes)

        agent_1 = AgentBaselineCompositionality(
            vocab_size=opts.vocab_size,
            n_attributes=opts.n_attributes,
            n_values=opts.n_values,
            max_len=opts.max_len,
            embed_dim=opts.sender_embedding,
            sender_hidden_size=opts.sender_hidden,
            receiver_hidden_size=opts.receiver_hidden,
            sender_cell=opts.sender_cell,
            receiver_cell=opts.receiver_cell,
            sender_num_layers=opts.sender_num_layers,
            receiver_num_layers=opts.receiver_num_layers,
            force_eos=force_eos)

        agent_1.load_state_dict(
            torch.load(opts.agent_1_weights, map_location=torch.device('cpu')))
        agent_1.to(device)

        agent_2 = AgentBaselineCompositionality(
            vocab_size=opts.vocab_size,
            n_attributes=opts.n_attributes,
            n_values=opts.n_values,
            max_len=opts.max_len,
            embed_dim=opts.sender_embedding,
            sender_hidden_size=opts.sender_hidden,
            receiver_hidden_size=opts.receiver_hidden,
            sender_cell=opts.sender_cell,
            receiver_cell=opts.receiver_cell,
            sender_num_layers=opts.sender_num_layers,
            receiver_num_layers=opts.receiver_num_layers,
            force_eos=force_eos)

        agent_2.load_state_dict(
            torch.load(opts.agent_2_weights, map_location=torch.device('cpu')))
        agent_2.to(device)

        #complexity_train_1 = compute_complexity_compositionality(agent_1,compo_dataset,train_split,opts.n_attributes, opts.n_values,opts.n_sampling, device, meanings_distribution="uniform")
        #complexity_train_2 = compute_complexity_compositionality(agent_2,compo_dataset,train_split,opts.n_attributes, opts.n_values,opts.n_sampling, device, meanings_distribution="uniform")
        #complexity_test_1 = compute_complexity_compositionality(agent_1,compo_dataset,test_split,opts.n_attributes, opts.n_values,opts.n_sampling, device, meanings_distribution="uniform")
        #complexity_test_2 = compute_complexity_compositionality(agent_2,compo_dataset,test_split,opts.n_attributes, opts.n_values,opts.n_sampling, device, meanings_distribution="uniform")

        #print("Complexity train 1={}".format(complexity_train_1),flush=True)
        #print("Complexity train 2={}".format(complexity_train_2),flush=True)
        #print("Complexity test 1={}".format(complexity_test_1),flush=True)
        #print("Complexity test 2={}".format(complexity_test_2),flush=True)

        #np.save(opts.dir_save+'/training_info/complexity_train_1.npy',complexity_train_1)
        #np.save(opts.dir_save+'/training_info/complexity_train_2.npy',complexity_train_2)
        #np.save(opts.dir_save+'/training_info/complexity_test_1.npy',complexity_test_1)
        #np.save(opts.dir_save+'/training_info/complexity_test_2.npy',complexity_test_2)

        average_entropy_1 = compute_average_symbol_entropy(
            agent_1,
            compo_dataset,
            train_split,
            opts.n_attributes,
            opts.n_values,
            opts.max_len,
            opts.vocab_size,
            opts.n_sampling,
            device,
            meanings_distribution="uniform")
        average_entropy_2 = compute_average_symbol_entropy(
            agent_2,
            compo_dataset,
            train_split,
            opts.n_attributes,
            opts.n_values,
            opts.max_len,
            opts.vocab_size,
            opts.n_sampling,
            device,
            meanings_distribution="uniform")

        #np.save(opts.dir_save+'/training_info/average_train_1.npy',complexity_train_1)

    core.close()