Ejemplo n.º 1
0
def predictFromArchive(archivPath,
                       net,
                       wantedShape=(41, 53, 38, 6),
                       crop=(slice(4, 28), slice(20, 44), slice(7, 31)),
                       resizeFactor=2):
    tensorFile = extractNiftiFromZipArchive(archivPath)
    tensor, name = getArrayFromNifti(tensorFile)
    os.remove(tensorFile)
    tensor = [tensor]
    name = [name]
    tensor = resizeTensors(tensor, wantedShape)
    tensor = cropBlockResize(tensor, resizeFactor, crop)
    tensor = normalizeByIndividualMean(tensor)
    tensor = np.stack(tensor)
    tensor = torch.from_numpy(tensor).type(torch.float32)
    tensor = Variable(tensor).view(-1, dimIn)

    net_out = net(tensor)
    prediction = net_out.max(1)[1]

    predictionStringArrOld = [
        "no axis is flipped", "the x axis is flipped", "the y axis is flipped",
        "the z axis is flipped", "it has no idea what's happening"
    ]

    predictionStringArrProfessional = [
        "you can process the data as is",
        "you should flip the x axis in the bvec",
        "you should flip the y axis in the bvec",
        "you should flip the z axis in the bvec",
        "You should check this subject manually"
    ]
    for i, name in enumerate([name]):
        predCertainty = F.softmax(net_out[i],
                                  dim=0)[prediction[i]].detach().numpy() * 100
        pred = prediction[i]
        if predCertainty < 99:
            print(
                f"{predictionStringArrProfessional[4]} for {name[i]}. ({100-predCertainty}% unsure"
            )
        else:
            print(
                f"I am {predCertainty:.3f}% pseudo sure that {predictionStringArrProfessional[pred]} for {name[i]}."
            )
        print(
            f"[Pseudo certainty is at {predCertainty}% for {predictionStringArrOld[pred]}]"
        )
Ejemplo n.º 2
0
from src.data.preprocess import resizeTensors, normalizeByIndividualMean, getTensorList_general, cropBlockResize
from src.models.simple_net import SimpleNet

tensorDir = '/black/localhome/reith/Desktop/projects/Tensors/test/'
networkWeights = 'models/trained_simplenet.torch'
wantedShape = (81, 106, 76, 6)
crop = (slice(7, 55), slice(40, 88), slice(14, 62))
resizeFactor = 4

dimIn = 12 * 12 * 12 * 6
dimOut = 4
net = SimpleNet(dimIn=dimIn, dimOut=dimOut)
net.load_state_dict(torch.load(networkWeights))

tensors, names = getTensorList_general(tensorDir, giveNames=True)
tensors = resizeTensors(tensors, wantedShape)
tensors = cropBlockResize(tensors, resizeFactor, crop)
tensors = normalizeByIndividualMean(tensors)
tensors = np.stack(tensors)
tensors = torch.from_numpy(tensors).type(torch.float32)
tensors = Variable(tensors).view(-1, dimIn)

net_out = net(tensors)
prediction = net_out.max(1)[1]
predictionStringArr = ["no axis", "the x axis", "the y axis", "the z axis"]
for i, name in enumerate(names):
    print(
        f"The magic blackbox thinks that {predictionStringArr[prediction[i]]} is flipped for {names[i]}."
    )
    print(
        f"[Pseudo certainty is at {F.softmax(net_out[i], dim=0)[prediction[i]].detach().numpy()*100}%]"