Ejemplo n.º 1
0
 def testCalculateChgNum(self):
     with open(
             os.path.join(UtilPath.Test(), "testDataset",
                          self.repository["name"], "chgNum.csv")) as f:
         reader = csv.reader(f)
         datasTest = [row for row in reader][1:]
     for dataTest in datasTest:
         pathFile = dataTest[18].replace("/", "\\")
         with self.subTest(pathFile=pathFile):
             data = Data(self.gr, pathFile,
                         self.dataset.getCommitsBug(self.repository))
             self.assertEqual(data.calculateChgNum(), int(dataTest[3]))
Ejemplo n.º 2
0
@Author: Zengrui Zhao
"""
import torch
import sys
import time
from torch.utils.data import DataLoader
sys.path.append('..')
from src.dataset import Data

if __name__ == '__main__':
    use_cuda = torch.cuda.is_available()
    for num_workers in range(1, 16):  # 遍历worker数
        kwargs = {
            'num_workers': num_workers,
            'pin_memory': False
        } if use_cuda else {}
        train_set = Data(rootPth='/home/zzr/Data/multiNucle', mode='test')
        train_loader = DataLoader(train_set,
                                  batch_size=16,
                                  drop_last=False,
                                  shuffle=True,
                                  **kwargs)

        start = time.time()
        for epoch in range(1, 3):
            for batch_idx, (data, target) in enumerate(train_loader):  # 不断load
                pass

        end = time.time()
        print("Finish with:{} second, num_workers={}".format(
            end - start, num_workers))
Ejemplo n.º 3
0
            datetime.date.today() + datetime.timedelta(days=1)
        ).strftime("%Y/%m/%d")

        try:
            book_page = client.request_booking_page()
            img_resp = client.request_security_code_img(book_page.content)
            image_ori = np.array(Image.open(io.BytesIO(img_resp.content)))

            image = cv2.resize(image_ori, (128, 128))
            with torch.no_grad():
                image = (
                    cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)[np.newaxis, np.newaxis, :, :] / 255.0
                )
                image = torch.tensor(image, dtype=torch.float32).cuda()
                code = CNN.decode(model(image))[0]
                pred = Data.decode(code)

            params["homeCaptcha:securityCode"] = "".join(pred)

            ### show debug image
            # cv2.putText(image_ori, "".join(pred), (20, 20), 3, 1, (255, 0, 255))
            # cv2.imshow("img", image_ori)
            # cv2.waitKey(0)

            result = client.submit_booking_form(params)
            errors = error_feedback.parse(result.content)
            if len(errors) == 0:
                cv2.imwrite(
                    os.path.join(target_path, "ori", str(image_cnt).zfill(5) + ".jpg"), image_ori
                )
                crawled_data.append([str(image_cnt).zfill(5) + ".jpg", "".join(pred)])
Ejemplo n.º 4
0
def main(args, logger):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    writer = SummaryWriter(logdir=args.subTensorboardDir)
    trainSet = Data(mode='train')
    trainLoader = DataLoader(trainSet,
                             batch_size=args.batchSizeTrain,
                             shuffle=True,
                             pin_memory=False,
                             drop_last=False,
                             num_workers=args.numWorkers)
    testSet = Data(mode='test')
    testLoader = DataLoader(testSet,
                            batch_size=args.batchSizeTest,
                            shuffle=False,
                            pin_memory=False,
                            num_workers=args.numWorkers)
    # net = smp.Unet(classes=2).to(device)
    net = smp.Linknet(classes=1,
                      activation='sigmoid',
                      encoder_name='se_resnext101_32x4d').to(device)
    # criterion = nn.CrossEntropyLoss().to(device)
    criterion = smploss.DiceLoss(eps=sys.float_info.min).to(device)
    # criterion = DiceLoss().to(device)
    optimizer = optim.SGD(net.parameters(), lr=.1, momentum=.9)
    scheduler = optim.lr_scheduler.StepLR(optimizer,
                                          step_size=args.scheduleStep,
                                          gamma=0.1)
    runningLoss = []
    st = stGloble = time.time()
    totalIter = len(trainLoader) * args.epoch
    iter = 0
    for epoch in range(args.epoch):
        if epoch != 0 and epoch % args.evalFrequency == 0:
            pass
        if epoch != 0 and epoch % args.saveFrequency == 0:
            modelName = osp.join(args.subModelDir, 'out_{}.pth'.format(epoch))
            state_dict = net.modules.state_dict() if hasattr(
                net, 'module') else net.state_dict()
            torch.save(state_dict, modelName)

        for img, mask in trainLoader:
            iter += 1
            img = img.to(device)
            mask = mask.to(device, dtype=torch.int64).unsqueeze(1)
            optimizer.zero_grad()
            outputs = net(img)
            # print(outputs.shape, mask.shape)
            # break
            loss = criterion(outputs, mask)
            loss.backward()
            optimizer.step()
            runningLoss.append(loss.item())
            if iter % args.msgFrequency == 0:
                # writer.add_images('img', img, iter)
                # writer.add_images('mask', mask.unsqueeze(1), iter)
                ed = time.time()
                spend = ed - st
                spendGloable = ed - stGloble
                st = ed
                eta = int((totalIter - iter) * (spendGloable / iter))
                spendGloable = str(datetime.timedelta(seconds=spendGloable))
                eta = str(datetime.timedelta(seconds=eta))
                avgLoss = np.mean(runningLoss)
                runningLoss = []
                lr = optimizer.param_groups[0]['lr']
                msg = '. '.join([
                    'epoch:{epoch}', 'iter/total_iter:{iter}/{totalIter}',
                    'lr:{lr:.5f}', 'loss:{loss:.4f}',
                    'spend/gloable_spend:{spend:.4f}/{gloable_spend}',
                    'eta:{eta}'
                ]).format(epoch=epoch,
                          loss=avgLoss,
                          iter=iter,
                          totalIter=totalIter,
                          spend=spend,
                          gloable_spend=spendGloable,
                          lr=lr,
                          eta=eta)

                logger.info(msg)
                writer.add_scalar('loss', avgLoss, iter)
                writer.add_scalar('lr', lr, iter)

        scheduler.step()

    outName = osp.join(args.subModelDir, 'final.pth')
    torch.save(net.cpu().state_dict(), outName)