Ejemplo n.º 1
0
def main(args):

    network = importlib.import_module(args.model_def)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # Write arguments to a text file
    facenet.write_arguments_to_file(args, os.path.join(log_dir,
                                                       'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    # src_path,_ = os.path.split(os.path.realpath(__file__))
    # facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)

    # Fetch dataets
    # VGGface2
    print('Fetch VGGface2 as source dataset at {}'.format(
        args.vggface2_train_dir))
    src_train_set = facenet.get_dataset(args.vggface2_train_dir)
    # validation_set = facenet.get_dataset(args.vggface2_val_dir)

    # COX S2V
    print('Fetch COX-S2V as target dataset at {}'.format(args.cox_video_dir))

    cox_dataset = cox.cox_data(args.cox_still_dir, args.cox_video_dir,
                               args.cox_pairs)

    train_folds = [0, 1, 2]
    evaluation_folds = [3, 4, 5, 6, 7, 8, 9]

    # cox_train_list = cox_dataset.get_dataset(train_folds)
    # cox_val_list = list(itertools.chain.from_iterable(fold_list[3:10]))
    tgt_train_set = cox_dataset.get_dataset(train_folds, video_only=True)
    # tgt_val_set = cox.get_video_dataset(args.cox_video_dir, cox_val_list)

    cox_paths, cox_issame = cox_dataset.get_pairs(evaluation_folds)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:
        print('Pre-trained model: %s' %
              os.path.expanduser(args.pretrained_model))

    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs)
        # Get the paths for embeddings projection

    # Get the paths for embeddings projection

    lfw_proj_paths, lfw_proj_labels = lfw.get_paths_from_file(
        args.lfw_dir, args.lfw_projection)

    cox_proj_paths, cox_proj_labels = cox_dataset.get_paths_from_file(
        args.cox_projection)

    # Combine projection paths
    projection_paths = lfw_proj_paths + cox_proj_paths
    proj_labels = lfw_proj_labels + cox_proj_labels

    # Create label map if does not exist
    metadata_filename = 'meta.tsv'
    emb_dir = os.path.join(os.path.expanduser(log_dir), 'emb')
    if not os.path.isdir(
            emb_dir):  # Create the log directory if it doesn't exist
        os.makedirs(emb_dir)
    with open(os.path.join(emb_dir, metadata_filename), "w") as meta_file:
        csvWriter = csv.writer(meta_file, delimiter='\t')
        csvWriter.writerows(np.array([proj_labels]).T)

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')

        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')

        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 4),
                                                 name='image_paths')
        labels_placeholder = tf.placeholder(tf.int64,
                                            shape=(None, 4),
                                            name='labels')

        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                              dtypes=[tf.string, tf.int64],
                                              shapes=[(4, ), (4, )],
                                              shared_name=None,
                                              name=None)
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder])

        nrof_preprocess_threads = 4
        images_and_labels = []
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                image = tf.image.decode_image(file_contents, channels=3)

                if args.random_crop:
                    image = tf.random_crop(
                        image, [args.image_size, args.image_size, 3])
                else:
                    image = tf.image.resize_image_with_crop_or_pad(
                        image, args.image_size, args.image_size)
                if args.random_flip:
                    image = tf.image.random_flip_left_right(image)

                #pylint: disable=no-member
                image.set_shape((args.image_size, args.image_size, 3))
                images.append(tf.image.per_image_standardization(image))
            images_and_labels.append([images, label])

        image_batch, labels_batch = tf.train.batch_join(
            images_and_labels,
            batch_size=batch_size_placeholder,
            shapes=[(args.image_size, args.image_size, 3), ()],
            enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)
        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        labels_batch = tf.identity(labels_batch, 'label_batch')

        # Build the inference graph
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
        # Split embeddings into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative, target = tf.unstack(
            tf.reshape(embeddings, [-1, 4, args.embedding_size]), 4, 1)
        loss, adv_loss, triplet_loss = adversarialloss.quadruplets_loss(
            anchor, positive, negative, target, args.alpha, args.lamb,
            args.zeta)
        # triplet_loss = tripletloss.triplet_loss(anchor, positive, negative, args.alpha)
        # adv_loss = adversarialloss.adversarial_loss(anchor, target, args.alpha)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the total losses
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([loss] + regularization_losses,
                              name='total_loss')
        reg_loss = tf.add_n(regularization_losses, name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables())

        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        # summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        # Initialize variables
        sess.run(tf.global_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})
        sess.run(tf.local_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})

        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // args.epoch_size

                # save_embeddings(sess, projection_paths, epoch, embeddings, labels_batch, image_paths_placeholder,
                #                 labels_placeholder,
                #                 batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op,
                #                 args.batch_size, emb_dir, args.embedding_size, tag='lfw')
                #
                # # Evaluate on COX
                # evaluate(sess, cox_paths, embeddings, labels_batch, image_paths_placeholder,
                #          labels_placeholder,
                #          batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder,
                #          enqueue_op,
                #          cox_issame, args.batch_size,
                #          args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size,
                #          tag='cox')
                #
                # if args.lfw_dir:
                #     evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder,
                #             batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, args.batch_size,
                #             args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size)

                # Train for one epoch
                train(args, sess, src_train_set, tgt_train_set, epoch,
                      image_paths_placeholder, labels_placeholder,
                      labels_batch, batch_size_placeholder,
                      learning_rate_placeholder, phase_train_placeholder,
                      enqueue_op, input_queue, global_step, embeddings,
                      total_loss, triplet_loss, adv_loss, reg_loss, train_op,
                      summary_writer, args.learning_rate_schedule_file,
                      args.embedding_size)

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, step)

                # Evaluate on LFW

    return model_dir
Ejemplo n.º 2
0
def main(args):

    np.random.seed(seed=args.seed)
    network = importlib.import_module(args.model_def)

    chokepoint_dataset = chokepoint.chokepoint_data(args.still_dir,
                                                    args.video_dir,
                                                    args.chokepoint_pairs)

    fold_list = [([0, 1], [2, 3, 4]), ([1, 2], [3, 4, 0]), ([2, 3], [4, 0, 1]),
                 ([3, 4], [0, 1, 2]), ([4, 0], [1, 2, 3])]

    for fold_idx in range(5):

        print('Fold: {}'.format(fold_idx))

        train_folds, evaluation_folds = fold_list[fold_idx]

        # Train set
        chokepoint_train_set = chokepoint_dataset.get_dataset(train_folds)
        chokepoint1_paths, chokepoint1_issame = chokepoint_dataset.get_pairs(
            train_folds)

        # del chokepoint1_paths[-4:]
        # del chokepoint1_issame[-2:]

        # Validation set
        chokepoint2_paths, chokepoint2_issame = chokepoint_dataset.get_pairs(
            evaluation_folds)

        subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
        log_dir = os.path.join(os.path.expanduser(args.logs_base_dir),
                               'fold{}_'.format(fold_idx) + subdir)
        if not os.path.isdir(
                log_dir):  # Create the log directory if it doesn't exist
            os.makedirs(log_dir)
        model_dir = os.path.join(os.path.expanduser(args.models_base_dir),
                                 'fold{}_'.format(fold_idx) + subdir)
        if not os.path.isdir(
                model_dir):  # Create the model directory if it doesn't exist
            os.makedirs(model_dir)

        # Write arguments to a text file
        facenet.write_arguments_to_file(args,
                                        os.path.join(log_dir, 'arguments.txt'))

        # Store some git revision info in a text file in the log directory
        src_path, _ = os.path.split(os.path.realpath(__file__))
        facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

        print('Model directory: %s' % model_dir)
        print('Log directory: %s' % log_dir)
        if args.pretrained_model:
            print('Pre-trained model: %s' %
                  os.path.expanduser(args.pretrained_model))

        if args.lfw_dir:
            print('LFW directory: %s' % args.lfw_dir)
            # Read the file containing the pairs used for testing
            pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
            # Get the paths for the corresponding images
            lfw_paths, lfw_issame = lfw.get_paths(
                os.path.expanduser(args.lfw_dir), pairs)

        with tf.Graph().as_default():
            tf.set_random_seed(args.seed)
            global_step = tf.Variable(0, trainable=False)

            # Placeholder for the learning rate
            learning_rate_placeholder = tf.placeholder(tf.float32,
                                                       name='learning_rate')

            batch_size_placeholder = tf.placeholder(tf.int32,
                                                    name='batch_size')

            phase_train_placeholder = tf.placeholder(tf.bool,
                                                     name='phase_train')

            image_paths_placeholder = tf.placeholder(tf.string,
                                                     shape=(None, 3),
                                                     name='image_paths')
            labels_placeholder = tf.placeholder(tf.int64,
                                                shape=(None, 3),
                                                name='labels')

            input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                                  dtypes=[tf.string, tf.int64],
                                                  shapes=[(3, ), (3, )],
                                                  shared_name=None,
                                                  name=None)
            enqueue_op = input_queue.enqueue_many(
                [image_paths_placeholder, labels_placeholder])

            nrof_preprocess_threads = 4
            images_and_labels = []
            for _ in range(nrof_preprocess_threads):
                filenames, label = input_queue.dequeue()
                images = []
                for filename in tf.unstack(filenames):
                    file_contents = tf.read_file(filename)
                    image = tf.image.decode_image(file_contents, channels=3)

                    if args.random_crop:
                        image = tf.random_crop(
                            image, [args.image_size, args.image_size, 3])
                    else:
                        image = tf.image.resize_image_with_crop_or_pad(
                            image, args.image_size, args.image_size)
                    if args.random_flip:
                        image = tf.image.random_flip_left_right(image)

                    #pylint: disable=no-member
                    image.set_shape((args.image_size, args.image_size, 3))
                    images.append(tf.image.per_image_standardization(image))
                images_and_labels.append([images, label])

            image_batch, labels_batch = tf.train.batch_join(
                images_and_labels,
                batch_size=batch_size_placeholder,
                shapes=[(args.image_size, args.image_size, 3), ()],
                enqueue_many=True,
                capacity=4 * nrof_preprocess_threads * args.batch_size,
                allow_smaller_final_batch=True)
            image_batch = tf.identity(image_batch, 'image_batch')
            image_batch = tf.identity(image_batch, 'input')
            labels_batch = tf.identity(labels_batch, 'label_batch')

            # Build the inference graph
            prelogits, _ = network.inference(
                image_batch,
                args.keep_probability,
                phase_train=phase_train_placeholder,
                bottleneck_layer_size=args.embedding_size,
                weight_decay=args.weight_decay)

            embeddings = tf.nn.l2_normalize(prelogits,
                                            1,
                                            1e-10,
                                            name='embeddings')
            # Split embeddings into anchor, positive and negative and calculate triplet loss
            anchor, positive, negative = tf.unstack(
                tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1)
            triplet_loss = facenet.triplet_loss(anchor, positive, negative,
                                                args.alpha)

            learning_rate = tf.train.exponential_decay(
                learning_rate_placeholder,
                global_step,
                args.learning_rate_decay_epochs * args.epoch_size,
                args.learning_rate_decay_factor,
                staircase=True)
            tf.summary.scalar('learning_rate', learning_rate)

            # Calculate the total losses
            regularization_losses = tf.get_collection(
                tf.GraphKeys.REGULARIZATION_LOSSES)
            total_loss = tf.add_n([triplet_loss] + regularization_losses,
                                  name='total_loss')

            # Build a Graph that trains the model with one batch of examples and updates the model parameters
            train_op = facenet.train(total_loss, global_step, args.optimizer,
                                     learning_rate, args.moving_average_decay,
                                     tf.global_variables())

            # Create a saver
            saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

            # Build the summary operation based on the TF collection of Summaries.
            # summary_op = tf.summary.merge_all()

            # Start running operations on the Graph.
            gpu_options = tf.GPUOptions(
                per_process_gpu_memory_fraction=args.gpu_memory_fraction)
            sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

            # Initialize variables
            sess.run(tf.global_variables_initializer(),
                     feed_dict={phase_train_placeholder: True})
            sess.run(tf.local_variables_initializer(),
                     feed_dict={phase_train_placeholder: True})

            summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
            coord = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=coord, sess=sess)

            with sess.as_default():

                if args.pretrained_model:
                    print('Restoring pretrained model: %s' %
                          args.pretrained_model)
                    saver.restore(sess,
                                  os.path.expanduser(args.pretrained_model))

                # Training and validation loop
                epoch = 0
                while epoch < args.max_nrof_epochs:
                    step = sess.run(global_step, feed_dict=None)
                    epoch = step // args.epoch_size

                    # Evaluate on COX
                    evaluate(sess,
                             chokepoint1_paths,
                             embeddings,
                             labels_batch,
                             image_paths_placeholder,
                             labels_placeholder,
                             batch_size_placeholder,
                             learning_rate_placeholder,
                             phase_train_placeholder,
                             enqueue_op,
                             chokepoint1_issame,
                             100,
                             2,
                             log_dir,
                             step,
                             summary_writer,
                             args.embedding_size,
                             tag='chokepoint_train')

                    evaluate(sess,
                             chokepoint2_paths,
                             embeddings,
                             labels_batch,
                             image_paths_placeholder,
                             labels_placeholder,
                             batch_size_placeholder,
                             learning_rate_placeholder,
                             phase_train_placeholder,
                             enqueue_op,
                             chokepoint2_issame,
                             100,
                             3,
                             log_dir,
                             step,
                             summary_writer,
                             args.embedding_size,
                             tag='chokepoint_eval')

                    # Evaluate on LFW
                    # if args.lfw_dir:
                    #     lfw_result = evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder,
                    #                           batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op,
                    #                           lfw_issame, args.batch_size,
                    #                           args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size, tag='lfw')

                    # Train for one epoch
                    train(args, sess, chokepoint_train_set, epoch,
                          image_paths_placeholder, labels_placeholder,
                          labels_batch, batch_size_placeholder,
                          learning_rate_placeholder, phase_train_placeholder,
                          enqueue_op, input_queue, global_step, embeddings,
                          total_loss, train_op, summary_writer,
                          args.learning_rate_schedule_file,
                          args.embedding_size)

                    # Save variables and the metagraph if it doesn't exist already
                    save_variables_and_metagraph(sess, saver, summary_writer,
                                                 model_dir, subdir, step)

    return model_dir
def main(args):
    network = importlib.import_module(args.model_def)
    image_size = (args.image_size, args.image_size)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')  # 用当前时间作为文件夹名称
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir),
                           subdir)  # log保存路径
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir),
                             subdir)  # 训练好的模型的保存路径
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    stat_file_name = os.path.join(log_dir, 'stat.h5')

    # Write arguments to a text file 这个文件保存一些训练时候用到的超参数信息
    facenet.write_arguments_to_file(args, os.path.join(log_dir,
                                                       'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    # 保存一些版本信息
    src_path, _ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    random.seed(args.seed)
    dataset = facenet.get_dataset(args.data_dir)  # 训练数据路径
    if args.filter_filename:
        dataset = filter_dataset(dataset,
                                 os.path.expanduser(args.filter_filename),
                                 args.filter_percentile,
                                 args.filter_min_nrof_images_per_class)
    # 数据集划分为训练集和验证集
    if args.validation_set_split_ratio > 0.0:
        train_set, val_set = facenet.split_dataset(
            dataset, args.validation_set_split_ratio,
            args.min_nrof_val_images_per_class, 'SPLIT_IMAGES')
    else:
        train_set, val_set = dataset, []
    # 分类的数量,即训练集中的文件夹数量
    nrof_classes = len(train_set)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    pretrained_model = None
    # 预训练模型
    if args.pretrained_model:
        pretrained_model = os.path.expanduser(args.pretrained_model)
        print('Pre-trained model: %s' % pretrained_model)
    # 测试用的lfw数据的路径
    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs)

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # Get a list of image paths and their labels
        # 获取训练图像路径和对应的标签
        image_list, label_list = facenet.get_image_paths_and_labels(train_set)
        assert len(image_list) > 0, 'The training set should not be empty'
        # 用于验证的图像的路径和对应的标签
        val_image_list, val_label_list = facenet.get_image_paths_and_labels(
            val_set)

        # Create a queue that produces indices into the image_list and label_list
        labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
        range_size = array_ops.shape(labels)[0]
        index_queue = tf.train.range_input_producer(range_size,
                                                    num_epochs=None,
                                                    shuffle=True,
                                                    seed=None,
                                                    capacity=32)

        index_dequeue_op = index_queue.dequeue_many(
            args.batch_size * args.epoch_size, 'index_dequeue')

        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 1),
                                                 name='image_paths')
        labels_placeholder = tf.placeholder(tf.int32,
                                            shape=(None, 1),
                                            name='labels')
        control_placeholder = tf.placeholder(tf.int32,
                                             shape=(None, 1),
                                             name='control')

        nrof_preprocess_threads = 4
        # 先入先出队列
        input_queue = data_flow_ops.FIFOQueue(
            capacity=2000000,
            dtypes=[tf.string, tf.int32, tf.int32],
            shapes=[(1, ), (1, ), (1, )],
            shared_name=None,
            name=None)
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder, control_placeholder],
            name='enqueue_op')
        image_batch, label_batch = facenet.create_input_pipeline(
            input_queue, image_size, nrof_preprocess_threads,
            batch_size_placeholder)

        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        label_batch = tf.identity(label_batch, 'label_batch')

        print('Number of classes in training set: %d' % nrof_classes)
        print('Number of examples in training set: %d' % len(image_list))

        print('Number of classes in validation set: %d' % len(val_set))
        print('Number of examples in validation set: %d' % len(val_image_list))

        print('Building training graph')

        # Build the inference graph
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)
        logits = slim.fully_connected(
            prelogits,
            len(train_set),
            activation_fn=None,
            weights_initializer=slim.initializers.xavier_initializer(),
            weights_regularizer=slim.l2_regularizer(args.weight_decay),
            scope='Logits',
            reuse=False)
        # 标准化
        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

        # Norm for the prelogits
        eps = 1e-4
        prelogits_norm = tf.reduce_mean(
            tf.norm(tf.abs(prelogits) + eps, ord=args.prelogits_norm_p,
                    axis=1))
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
                             prelogits_norm * args.prelogits_norm_loss_factor)

        # Add center loss
        prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch,
                                                       args.center_loss_alfa,
                                                       nrof_classes)
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
                             prelogits_center_loss * args.center_loss_factor)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the average cross entropy loss across the batch
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_batch,
            logits=logits,
            name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy,
                                            name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)

        correct_prediction = tf.cast(
            tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)),
            tf.float32)
        accuracy = tf.reduce_mean(correct_prediction)

        # Calculate the total losses
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([cross_entropy_mean] + regularization_losses,
                              name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables(), args.log_histograms)

        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(),
                               max_to_keep=1,
                               save_relative_paths=True)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            # if pretrained_model:
            #     print('Restoring pretrained model: %s' % pretrained_model)
            #     saver.restore(sess, tf.train.latest_checkpoint(pretrained_model))

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
            ckpt = tf.train.get_checkpoint_state(args.pretrained_model)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)

            # Training and validation loop
            print('Running training')
            nrof_steps = args.max_nrof_epochs * args.epoch_size
            nrof_val_samples = int(
                math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs)
            )  # Validate every validate_every_n_epochs as well as in the last epoch
            stat = {
                'loss':
                np.zeros((nrof_steps, ), np.float32),
                'center_loss':
                np.zeros((nrof_steps, ), np.float32),
                'reg_loss':
                np.zeros((nrof_steps, ), np.float32),
                'xent_loss':
                np.zeros((nrof_steps, ), np.float32),
                'prelogits_norm':
                np.zeros((nrof_steps, ), np.float32),
                'accuracy':
                np.zeros((nrof_steps, ), np.float32),
                'val_loss':
                np.zeros((nrof_val_samples, ), np.float32),
                'val_xent_loss':
                np.zeros((nrof_val_samples, ), np.float32),
                'val_accuracy':
                np.zeros((nrof_val_samples, ), np.float32),
                'lfw_accuracy':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'lfw_valrate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'learning_rate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_train':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_validate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_evaluate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'prelogits_hist':
                np.zeros((args.max_nrof_epochs, 1000), np.float32),
            }
            for epoch in range(1, args.max_nrof_epochs + 1):
                step = sess.run(global_step, feed_dict=None)
                # Train for one epoch
                t = time.time()
                cont = train(
                    args, sess, epoch, image_list, label_list,
                    index_dequeue_op, enqueue_op, image_paths_placeholder,
                    labels_placeholder, learning_rate_placeholder,
                    phase_train_placeholder, batch_size_placeholder,
                    control_placeholder, global_step, total_loss, train_op,
                    summary_op, summary_writer, regularization_losses,
                    args.learning_rate_schedule_file, stat, cross_entropy_mean,
                    accuracy, learning_rate, prelogits, prelogits_center_loss,
                    args.random_rotate, args.random_crop, args.random_flip,
                    prelogits_norm, args.prelogits_hist_max,
                    args.use_fixed_image_standardization)
                stat['time_train'][epoch - 1] = time.time() - t

                if not cont:
                    break

                t = time.time()
                if len(val_image_list) > 0 and (
                    (epoch - 1) % args.validate_every_n_epochs
                        == args.validate_every_n_epochs - 1
                        or epoch == args.max_nrof_epochs):
                    validate(args, sess, epoch, val_image_list, val_label_list,
                             enqueue_op, image_paths_placeholder,
                             labels_placeholder, control_placeholder,
                             phase_train_placeholder, batch_size_placeholder,
                             stat, total_loss, regularization_losses,
                             cross_entropy_mean, accuracy,
                             args.validate_every_n_epochs,
                             args.use_fixed_image_standardization)
                stat['time_validate'][epoch - 1] = time.time() - t

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, epoch)

                # Evaluate on LFW
                t = time.time()
                if args.lfw_dir:
                    evaluate(sess, enqueue_op, image_paths_placeholder,
                             labels_placeholder, phase_train_placeholder,
                             batch_size_placeholder, control_placeholder,
                             embeddings, label_batch, lfw_paths, actual_issame,
                             args.lfw_batch_size, args.lfw_nrof_folds, log_dir,
                             step, summary_writer, stat, epoch,
                             args.lfw_distance_metric, args.lfw_subtract_mean,
                             args.lfw_use_flipped_images,
                             args.use_fixed_image_standardization)
                stat['time_evaluate'][epoch - 1] = time.time() - t

                print('Saving statistics')
                with h5py.File(stat_file_name, 'w') as f:
                    for key, value in stat.items():
                        f.create_dataset(key, data=value)

    return model_dir
Ejemplo n.º 4
0
def train(server, cluster_spec, args, ctx):
  task_index = ctx.task_index
  num_workers = len(cluster_spec['worker'])
  is_chief = task_index == 0

  local_data_path = args.local_data_path
  data_dir = os.path.join(local_data_path, "train")
  val_dir = os.path.join(local_data_path, "val")
  val_pairs = os.path.join(local_data_path, "pairs.txt")

  subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
  log_dir = args.workspace + "/logs/" + subdir

  checkpoint_dir = args.checkpoint_dir if args.checkpoint_dir else (args.workspace + "/models/" + subdir)

  if task_index == 0:
    if not tf.gfile.Exists(args.workspace):
      tf.gfile.MakeDirs(args.workspace)
    if not tf.gfile.Exists(checkpoint_dir):
      tf.gfile.MakeDirs(checkpoint_dir)
    if not tf.gfile.Exists(log_dir):
        tf.gfile.MakeDirs(log_dir)

  seed = random.SystemRandom().randint(0, 10240)
  print("Random seed: " + str(seed))
  np.random.seed(seed=seed)
  train_set = facenet.get_dataset(data_dir)

  print('Model directory: %s' % checkpoint_dir)
  print('Log directory: %s' % log_dir)

  # Read the file containing the pairs used for testing
  pairs = read_pairs(val_pairs)
  # Get the paths for the corresponding images
  val_image_paths, actual_issame = get_paths(val_dir, pairs)

  with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % task_index, cluster=cluster_spec)):
    tf.set_random_seed(seed)

    # Placeholder for the learning rate
    learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')
    batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
    phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
    image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 3), name='image_paths')
    labels_placeholder = tf.placeholder(tf.int64, shape=(None, 3), name='labels')

    input_queue = data_flow_ops.FIFOQueue(capacity=10000,
                                          dtypes=[tf.string, tf.int64],
                                          shapes=[(3,), (3,)],
                                          shared_name=None, name=None)
    enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder])

    nrof_preprocess_threads = 4
    images_and_labels = []
    for _ in range(nrof_preprocess_threads):
      filenames, label = input_queue.dequeue()
      images = []
      for filename in tf.unstack(filenames):
        file_contents = tf.read_file(filename)
        image = tf.image.decode_image(file_contents, channels=3)
        processed_image = vgg_preprocessing.preprocess_image(image, args.image_size, args.image_size, is_training=False, bgr=True)
        if args.random_flip:
          processed_image = tf.image.random_flip_left_right(processed_image)

        images.append(processed_image)
      images_and_labels.append([images, label])

    image_batch, labels_batch = tf.train.batch_join(
      images_and_labels, batch_size=batch_size_placeholder,
      shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True,
      capacity=4 * nrof_preprocess_threads * args.batch_size,
      allow_smaller_final_batch=True)
    image_batch = tf.identity(image_batch, 'image_batch')
    image_batch = tf.identity(image_batch, 'input')
    labels_batch = tf.identity(labels_batch, 'label_batch')

    with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=args.weight_decay)):
      val_logits, _ = resnet_v1.resnet_v1_101_triplet(image_batch, embedding_size=args.embedding_size, is_training=phase_train_placeholder)

    loader = tf.train.Saver()
    global_step = tf.train.get_or_create_global_step()

    embeddings = tf.squeeze(val_logits['triplet_pre_embeddings'], [1, 2], name='feat_embeddings/squeezed')
    embeddings = tf.nn.l2_normalize(embeddings, 1, 1e-10, name='embeddings')
    # Split embeddings into anchor, positive and negative and calculate triplet loss
    anchor, positive, negative = tf.unstack(tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1)
    triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha)

    learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
                                               args.learning_rate_decay_epochs * args.epoch_size,
                                               args.learning_rate_decay_factor, staircase=True)
    # Calculate the total losses
    regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
    total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss')

    tf.summary.scalar('learning_rate', learning_rate)
    tf.summary.scalar('triplet_loss', triplet_loss)
    tf.summary.scalar('total_losses', total_loss)

    train_layers = ['logits', 'mutli_task']
    var_list = []
    for v in tf.global_variables():
      splits = v.name.split("/")
      if len(splits) > 2 and splits[1] in train_layers:
        var_list.append(v)
    
    train_op, opt = facenet.train(total_loss, global_step, args.optimizer,
       learning_rate, args.moving_average_decay, var_list, sync_replicas=args.sync_replicas, replicas_to_aggregate=num_workers)

    summary_op = tf.summary.merge_all()
    saver = tf.train.Saver()
    
    hooks = []
    if args.sync_replicas:
      hooks += [opt.make_session_run_hook(is_chief)]

    sess_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False,
                                 device_filters=['/job:ps', '/job:worker/task:%d' % task_index])
    #sess_config.operation_timeout_in_ms=80000
    save_path = os.path.join(checkpoint_dir, "model.ckpt")
    
    with tf.train.MonitoredTrainingSession(master=server.target,
                                           is_chief=is_chief,
                                           config=sess_config,
                                           hooks=hooks,
                                           save_summaries_steps=None,
                                           save_summaries_secs=None,
                                           stop_grace_period_secs=30) as sess:
      # Training and validation loop
      summary_writer = tf.summary.FileWriter(log_dir, sess.graph) if is_chief else None
      if is_chief:
        loader.restore(sess, args.pretrained_ckpt)

      step = 0
      while True:
        if is_chief:
          # checkpoint_path = os.path.join(checkpoint_dir, 'model-%s.ckpt' % "test")
          # saver.save(sess._sess._sess._sess._sess, checkpoint_path, global_step=step, write_meta_graph=False)
          evaluate(sess, val_image_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder,
                   batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op,
                   actual_issame, args.batch_size, args.lfw_nrof_folds, step, summary_writer, args.embedding_size)
          saver.save(sess._sess._sess._sess._sess, save_path, global_step = step)
        # Train for one epoch
        step = _train(args, sess, train_set, image_paths_placeholder, labels_placeholder, labels_batch,
               batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue,
               global_step, embeddings, total_loss, train_op, args.embedding_size, triplet_loss, summary_op, summary_writer)

  return checkpoint_dir
def main(args):
  
    network = importlib.import_module(args.model_def)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # Store some git revision info in a text file in the log directory
    src_path,_ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    random.seed(args.seed)
    print (args.data_dir)
    train_set = facenet.get_dataset(args.data_dir)
    if args.filter_filename:
        train_set = filter_dataset(train_set, os.path.expanduser(args.filter_filename), 
            args.filter_percentile, args.filter_min_nrof_images_per_class)
    nrof_classes = len(train_set)
    
    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    pretrained_model = None
    if args.pretrained_model:
        pretrained_model = os.path.expanduser(args.pretrained_model)
        print('Pre-trained model: %s' % pretrained_model)
    
    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)
    
    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)
        
        # Get a list of image paths and their labels
        image_list, label_list = facenet.get_image_paths_and_labels(train_set)
        assert len(image_list)>0, 'The dataset should not be empty'
        
        # Create a queue that produces indices into the image_list and label_list 
        labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
        range_size = array_ops.shape(labels)[0]
        index_queue = tf.train.range_input_producer(range_size, num_epochs=None,
                             shuffle=True, seed=None, capacity=32)
        
        index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue')
        
        learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')

        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        
        image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')

        labels_placeholder = tf.placeholder(tf.int64, shape=(None,1), name='labels')
        
        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                    dtypes=[tf.string, tf.int64],
                                    shapes=[(1,), (1,)],
                                    shared_name=None, name=None)
        enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder], name='enqueue_op')
        
        nrof_preprocess_threads = 4
        images_and_labels = []
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                image = tf.image.decode_image(file_contents)
                if args.random_rotate:
                    image = tf.py_func(facenet.random_rotate_image, [image], tf.uint8)
                if args.random_crop:
                    image = tf.random_crop(image, [args.image_size, args.image_size, 3])
                else:
                    image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size)
                if args.random_flip:
                    image = tf.image.random_flip_left_right(image)
    
                #pylint: disable=no-member
                image.set_shape((args.image_size, args.image_size, 3))
                images.append(tf.image.per_image_standardization(image))
            images_and_labels.append([images, label])
    
        image_batch, label_batch = tf.train.batch_join(
            images_and_labels, batch_size=batch_size_placeholder, 
            shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)
        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        label_batch = tf.identity(label_batch, 'label_batch')
        
        print('Total number of classes: %d' % nrof_classes)
        print('Total number of examples: %d' % len(image_list))
        
        print('Building training graph')
        
        # Build the inference graph
        prelogits, _ = network.inference(image_batch, args.keep_probability, 
            phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, 
            weight_decay=args.weight_decay)
        logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, 
                weights_initializer=tf.truncated_normal_initializer(stddev=0.1), 
                weights_regularizer=slim.l2_regularizer(args.weight_decay),
                scope='Logits', reuse=False)

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

        # Add center loss
        if args.center_loss_factor>0.0:
            prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes)
            tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor)

        learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
            args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the average cross entropy loss across the batch
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_batch, logits=logits, name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)
        
        # Calculate the total losses
        regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer, 
            learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms)
        
        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if pretrained_model:
                print('Restoring pretrained model: %s' % pretrained_model)
                saver.restore(sess, pretrained_model)

            # Training and validation loop
            print('Running training')
            epoch = 0
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // args.epoch_size
                # Train for one epoch
                train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder,
                    learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, global_step, 
                    total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file)

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step)

                # Evaluate on LFW
                if args.lfw_dir:
                    evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, 
                        embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer)
    sess.close()
    return model_dir
Ejemplo n.º 6
0
def main(args):

    #此处导入的是:models.inception_resnet_v1模型,以后再看怎么更改模型
    network = importlib.import_module(args.model_def)
    #用当前日期来命名模型
    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    #日志保存在c:\\users\\Administrator\logs\facenet\ 文件夹里
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)  #没有日志文件就创建一个
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # 把参数写在日志文件中
    facenet.write_arguments_to_file(args, os.path.join(log_dir,
                                                       'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    #arg_string:'E:/facenet/train_tripletloss.py'   output_dir:'C:\\Users\\Administrator/logs/facenet\\20180314-181556'
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    #获取数据集,train_set是包含文件路径与标签的集合
    #先输入一个父路径 path:'E:/facenet/data/lfw_160',接着输入每个子路径
    # 输出:一个list,每个元素是一个ImageClass,里边包含图片地址的list(image_paths)以及对应的人名(name)[以后可能会直接调用这几个属性]
    train_set = facenet.get_dataset(args.data_dir)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:  #用在判断是否有预训练模型,但是如果有,怎么加载呢?
        print('Pre-trained model: %s' %
              os.path.expanduser(args.pretrained_model))

    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)

    #建立图

#with语句适用于对资源进行访问的场合,确保使用过程中是否发生异常都会执行必要嘚瑟“清理”操作
    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # 学习率 Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        #批大小
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        #用于判断是训练还是测试
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        #图像路径
        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 3),
                                                 name='image_paths')
        # 图像标签
        labels_placeholder = tf.placeholder(tf.int64,
                                            shape=(None, 3),
                                            name='labels')
        #新建一个队列,数据流操作,fifo先入先出
        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                              dtypes=[tf.string, tf.int64],
                                              shapes=[(3, ), (3, )],
                                              shared_name=None,
                                              name=None)
        #enqueue_many返回的是一个操作
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder])

        nrof_preprocess_threads = 4
        images_and_labels = []
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                image = tf.image.decode_image(file_contents, channels=3)

                if args.random_crop:
                    image = tf.random_crop(
                        image, [args.image_size, args.image_size, 3])
                else:
                    image = tf.image.resize_image_with_crop_or_pad(
                        image, args.image_size, args.image_size)
                if args.random_flip:
                    image = tf.image.random_flip_left_right(image)

                #pylint: disable=no-member
                image.set_shape((args.image_size, args.image_size, 3))
                images.append(tf.image.per_image_standardization(image))
            images_and_labels.append([images, label])

        image_batch, labels_batch = tf.train.batch_join(
            images_and_labels,
            batch_size=batch_size_placeholder,
            shapes=[(args.image_size, args.image_size, 3), ()],
            enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)
        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        labels_batch = tf.identity(labels_batch, 'label_batch')

        # Build the inference (构造计算图)
        #其中prelogits是最后一层的输出
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)

        #L2正则化(范化)函数
        # embeddings = tf.nn.l2_normalize(输入向量, L2范化的维数(取0(列L2范化)或1(行L2范化)), 泛化的最小值边界, name='embeddings')
        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
        # Split embeddings into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(
            tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1)
        triplet_loss = facenet.triplet_loss(anchor, positive, negative,
                                            args.alpha)
        #将指数衰减应用在学习率上
        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # 计算损失
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        #构建L2正则化
        total_loss = tf.add_n([triplet_loss] + regularization_losses,
                              name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        # 确定优化方法并根据损失函数求梯度,在这里,每更行一次参数,global_step会加1
        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables())

        # Create a saver创建一个saver用来保存或者从内存中回复一个模型参数
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.能够在GPU上分配的最大内存
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        # Initialize variables
        sess.run(tf.global_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})
        sess.run(tf.local_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})

        #写log文件
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        #获取线程坐标
        coord = tf.train.Coordinator()
        #将队列中的多用sunner开始执行
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            #将所有数据过一遍的次数   默认500
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                #epoch_size是一个epoch中批的个数,这个epoch是全局的批处理个数以一个epoch中。。。这个epoch将用于求学习率
                epoch = step // args.epoch_size
                # Train for one epoch
                train(args, sess, train_set, epoch, image_paths_placeholder,
                      labels_placeholder, labels_batch, batch_size_placeholder,
                      learning_rate_placeholder, phase_train_placeholder,
                      enqueue_op, input_queue, global_step, embeddings,
                      total_loss, train_op, summary_op, summary_writer,
                      args.learning_rate_schedule_file, args.embedding_size,
                      anchor, positive, negative, triplet_loss)

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, step)

                # Evaluate on LFW
                if args.lfw_dir:
                    evaluate(sess, lfw_paths, embeddings, labels_batch,
                             image_paths_placeholder, labels_placeholder,
                             batch_size_placeholder, learning_rate_placeholder,
                             phase_train_placeholder, enqueue_op,
                             actual_issame, args.batch_size,
                             args.lfw_nrof_folds, log_dir, step,
                             summary_writer, args.embedding_size)

    return model_dir
Ejemplo n.º 7
0
def main(args):
  
    network = importlib.import_module(args.model_def, 'inference')

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    subdirmaxlin= subdir+'_lin_max' #fbtian_max
    maxlin_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdirmaxlin)#fbtian_max
    if not os.path.exists(maxlin_dir):#fbtian_max
        os.makedirs(maxlin_dir)#fbtian_max

    subdirmax= subdir+'_max' #fbtian_max
    modelmax_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdirmax)#fbtian_max
    if not os.path.exists(modelmax_dir):#fbtian_max
        os.makedirs(modelmax_dir)#fbtian_max

    # Store some git revision info in a text file in the log directory
    if not args.no_store_revision_info:
        src_path,_ = os.path.split(os.path.realpath(__file__))
        facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    train_set = facenet.get_dataset(args.data_dir)
    

    #for i in range(args.send2):
     #   np.random.shuffle(np.arange(10))


    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:
        print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model))
    
    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)

    
    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')
        
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        
        image_paths_placeholder = tf.placeholder(tf.string, shape=(None,3), name='image_paths')
        labels_placeholder = tf.placeholder(tf.int64, shape=(None,3), name='labels')
        
        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                    dtypes=[tf.string, tf.int64],
                                    shapes=[(3,), (3,)],
                                    shared_name=None, name=None)
        enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder])
        
        nrof_preprocess_threads = 4
        images_and_labels = []
        
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            fb_count=0
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                print('filename:%s'%filename )
                image = tf.image.decode_png(file_contents)
                
                if args.random_crop:
                    print('args.random_crop') #fbtian_add
                    image = tf.random_crop(image, [args.image_size, args.image_size, 3])
                else:
                    #print('else not args.random_crop') #come in fbtian_add
                    image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size)
                if args.random_flip:
                    print('args.random_flip')
                    image = tf.image.random_flip_left_right(image)
                if 1 :
                    image = tf.image.random_brightness(image, max_delta=0.2)  #Random brightness transformation
                    image = tf.image.random_contrast(image, lower=0.2, upper=1.0)#Random contrast transformation
                fb_count+=1
                #pylint: disable=no-member# fbtian_add
                image.set_shape((args.image_size, args.image_size, 3))
                images.append(tf.image.per_image_standardization(image))
            images_and_labels.append([images, label])
            print('fb_count:%d'%fb_count)
    
        image_batch, labels_batch = tf.train.batch_join(
            images_and_labels, batch_size=batch_size_placeholder, 
            shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)
        image_batch = tf.identity(image_batch, 'input') ##fbtian
        batch_norm_params = {
            # Decay for the moving averages
            'decay': 0.995,
            # epsilon to prevent 0s in variance
            'epsilon': 0.001,
            # force in-place updates of mean and variance estimates
            'updates_collections': None,
            # Moving averages ends up in the trainable variables collection
            'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
            # Only update statistics during training mode
            'is_training': phase_train_placeholder
        }
        # Build the inference graph
        prelogits, _ = network.inference(image_batch, args.keep_probability, 
            phase_train=phase_train_placeholder, weight_decay=args.weight_decay)
        pre_embeddings = slim.fully_connected(prelogits, args.embedding_size, activation_fn=None, 
                weights_initializer=tf.truncated_normal_initializer(stddev=0.1), 
                weights_regularizer=slim.l2_regularizer(args.weight_decay),
                normalizer_fn=slim.batch_norm,
                normalizer_params=batch_norm_params,
                scope='Bottleneck', reuse=False)
        
        embeddings = tf.nn.l2_normalize(pre_embeddings, 1, 1e-10, name='embeddings')
        # Split embeddings into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(tf.reshape(embeddings, [-1,3,args.embedding_size]), 3, 1)
        triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha)
        
        learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
            args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the total losses
        regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer, 
            learning_rate, args.moving_average_decay, tf.global_variables())
        
        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)###
        #sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 
        config = tf.ConfigProto(allow_soft_placement=True) ###########################################
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)###################################
        config.gpu_options.allow_growth = True###########################################
        #sess = tf.Session(config=config)###########################################
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,intra_op_parallelism_threads=8))    

        # Initialize variables
        sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder:True})
        sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder:True})

        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            acc_tmp=0
            val_tmp=0
            while epoch < args.max_nrof_epochs:
                
                step = sess.run(global_step, feed_dict=None)
                print(global_step )
                epoch = step // args.epoch_size
                # Train for one epoch
                train(args, sess, train_set, epoch, image_paths_placeholder, labels_placeholder, labels_batch,
                    batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step, 
                    embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file,
                    args.embedding_size, anchor, positive, negative, triplet_loss)

                # Save variables and the metagraph if it doesn't exist already


                save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step)

                # Evaluate on LFW
                if args.lfw_dir:
                    acc,val=evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder, 
                            batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, args.batch_size, 
                            args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size)

                    print('starting to save the maxacc and maxval ') #fbtian_max
                    if acc>acc_tmp:   #fbtian_max
                        maxmodel_path = os.path.join(maxlin_dir, 'model-%s.ckpt_accmax'%subdir) #fbtian_max
                        saver.save(sess, maxmodel_path, write_meta_graph=False)#fbtian_max
                        shutil.copy( maxmodel_path+'.data-00000-of-00001', modelmax_dir)
                        shutil.copy( maxmodel_path+'.index', modelmax_dir)

                        acc_tmp=acc   #fbtian_max
                    if val>val_tmp:   #fbtian_max
                        maxmodel_path = os.path.join(maxlin_dir, 'model-%s.ckpt_valmax'%subdir) #fbtian_max
                        saver.save(sess, maxmodel_path, write_meta_graph=False)#fbtian_max
                        shutil.copy( maxmodel_path+'.data-00000-of-00001', modelmax_dir)
                        shutil.copy( maxmodel_path+'.index', modelmax_dir)

                        val_tmp=val   #fbtian
                    print('end to save the maxacc and maxval ') #fbtian


    sess.close()
    return model_dir
Ejemplo n.º 8
0
def transform(args, pretrained_ckpt, image_size, output_dir, bottleneck_size):
    with tf.Graph().as_default():
        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 3),
                                                 name='image_paths')
        labels_placeholder = tf.placeholder(tf.int64,
                                            shape=(None, 3),
                                            name='labels')
        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                              dtypes=[tf.string, tf.int64],
                                              shapes=[(3, ), (3, )],
                                              shared_name=None,
                                              name=None)
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder])

        nrof_preprocess_threads = 4
        images_and_labels = []
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                image = tf.image.decode_image(file_contents, channels=3)
                processed_image = inception_preprocessing.preprocess_image(
                    image, args.image_size, args.image_size, is_training=False)
                # if args.random_crop:
                #     image = tf.random_crop(image, [args.image_size, args.image_size, 3])
                # else:
                #     image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size)
                if args.random_flip:
                    processed_image = tf.image.random_flip_left_right(
                        processed_image)

                images.append(processed_image)
            images_and_labels.append([images, label])

        image_batch, labels_batch = tf.train.batch_join(
            images_and_labels,
            batch_size=batch_size_placeholder,
            shapes=[(args.image_size, args.image_size, 3), ()],
            enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)
        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        labels_batch = tf.identity(labels_batch, 'label_batch')

        with slim.arg_scope(
                inception_resnet_v2.inception_resnet_v2_arg_scope(
                    weight_decay=args.weight_decay)):
            prelogits, _ = inception_resnet_v2.inception_resnet_v2(
                image_batch,
                num_classes=bottleneck_size,
                is_training=phase_train_placeholder)

        exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']
        variables_to_restore = slim.get_variables_to_restore(exclude=exclude)
        loader = tf.train.Saver(variables_to_restore)

        global_step = tf.train.get_or_create_global_step()

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
        # Split embeddings into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(
            tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1)
        triplet_loss = facenet.triplet_loss(anchor, positive, negative,
                                            args.alpha)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)
        # Calculate the total losses
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([triplet_loss] + regularization_losses,
                              name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_layers = [
            'Logits', 'Conv2d_7b_1x1', 'Block8', 'Repeat_2', 'Mixed_7a'
        ]
        var_list = []
        for v in tf.global_variables():
            splits = v.name.split("/")
            if len(splits) > 2 and splits[1] in train_layers:
                var_list.append(v)
        facenet.train(total_loss, global_step, args.optimizer, learning_rate,
                      args.moving_average_decay, var_list)

        saver = tf.train.Saver(max_to_keep=3)
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())

            loader.restore(sess, pretrained_ckpt)

            checkpoint_path = os.path.join(output_dir,
                                           'model-%s.ckpt' % bottleneck_size)
            saver.save(sess, checkpoint_path, write_meta_graph=False)
            metagraph_filename = os.path.join(
                output_dir, 'model-%s.meta' % bottleneck_size)
            saver.export_meta_graph(metagraph_filename)