Ejemplo n.º 1
0
# Epipolar data - Translation
epi_trans = np.empty((0, 3))
for cam in usedCams:
    epi_trans_cam = getH5pyData(config,
                                epiFilesDict,
                                usedSeqs,
                                'epi_trans_xyz',
                                3,
                                camera=cam)
    epi_trans = np.append(epi_trans, epi_trans_cam, axis=0)
epi_trans_parms = calcNormParms(epi_trans, trainIdxs)

# Save to File

normParmsFile = config.getOutputFiles(normParmsFilesDict, recalcDataNorm)
if normParmsFile is None:
    sys.exit()

with h5py.File(normParmsFile, 'w') as f:

    f.create_dataset('rot_xyz', data=rot_parms)
    f.create_dataset('trans_xyz', data=trans_parms)
    f.create_dataset('trans_rtp', data=polar_parms)
    f.create_dataset('noisy_rot_xyz', data=imu_parms)
    f.create_dataset('epi_rot_xyz', data=epi_rot_parms)
    f.create_dataset('epi_trans_xyz', data=epi_trans_parms)

print('^ Normalization Parameters Calculated')
print()
Ejemplo n.º 2
0
print()
print('v Standardizing Images')
for cam in usedCams:
    for seqStr in kittiSeqs:
        seq = int(seqStr)
        print('%sReading Camera %s, Sequence %02d' % (' ' * 2, cam, seq))

        calFile = config.getInputFiles(calFilesDict, seq)
        if (calFile is None):
            continue

        origImages = config.getInputFiles(origImageFilesDict, seq, cam)
        if (origImages is None):
            continue

        standardImages = config.getOutputFiles(standardImageFilesDict,
                                               recalcStandardImages, seq, cam)
        if (standardImages is None):
            continue

        standardImageFolder = config.getFolderRef(standardImages)

        # get cal matrix for sequence
        cameraCalMat = getCalMat(calFile, cam)
        map_x, map_y = getMaps(destImageShape, standardDict['overlap'],
                               cameraCalMat)

        numImages = len(origImages)
        for idx, origImageName in enumerate(origImages):

            if showProgress:
                percentComplete = int(idx / numImages * 100)
Ejemplo n.º 3
0
for cam in usedCams:
    for seqStr in kittiSeqs:
        seq = int(seqStr)
        print('%sReading Camera %s, Sequence %02d' % (' ' * 2, cam, seq))

        # Get image names
        origImageNames = config.getInputFiles(origImageFilesDict, seq, cam)
        # if (origImageNames is None):
        #     continue

        # get calibration files
        calFile = config.getInputFiles(calFilesDict, seq)
        # if (calFile is None):
        #     continue

        epiFile = config.getOutputFiles(epiFilesDict, recalcEpiData, seq, cam)
        # if epiFile is None:
        #     continue

        # get calibration matrix
        cameraCalMat = getCalMat(calFile, cam)

        epi_rot_xyz = np.empty((0, 3))
        epi_trans_xyz = np.empty((0, 3))

        numImagePairs = len(origImageNames) - 1

        # get first image keypoints and descriptors
        srcKp, srcDesc = getKpsAndDescs(SIFT_detector, origImageNames[0])

        for idx, origImageName in enumerate(origImageNames[1:]):
Ejemplo n.º 4
0
norm_epi_rot = applyNorm(epi_rot, epi_rot_parms)

# Epipolar data - Translation
epi_trans = np.empty((0, 3))
for cam in usedCams:
    epi_trans_cam = getH5pyData(config,
                                epiFilesDict,
                                usedSeqs,
                                'epi_trans_xyz',
                                3,
                                camera=cam)
    epi_trans = np.append(epi_trans, epi_trans_cam, axis=0)
norm_epi_trans = applyNorm(epi_trans, epi_trans_parms)

# Save to File
normDataFile = config.getOutputFiles(normDataFilesDict, reapplyDataNorm)
if normDataFile is not None:
    print('Saving Normalized Truth and IMU Data')
    with h5py.File(normDataFile, 'w') as f:
        f.create_dataset('rot_xyz', data=norm_truth_rot)
        f.create_dataset('trans_xyz', data=norm_truth_xyz)
        f.create_dataset('trans_rtp', data=norm_truth_polar)
        f.create_dataset('noisy_rot_xyz', data=norm_imu_rot)

normEpiFile = config.getOutputFiles(normEpiFilesDict, reapplyDataNorm)
if normEpiFile is not None:
    print('Saving Normalized Epipolar Data')
    with h5py.File(normEpiFile, 'w') as f:
        f.create_dataset('epi_rot_xyz', data=norm_epi_rot)
        f.create_dataset('epi_trans_xyz', data=norm_epi_trans)
Ejemplo n.º 5
0
    arwError**2 * 1 / 3600 * 1 / sampleRate) * np.pi / 180  # radians
#                sqrt(  deg^2/hr   * hr/sec *      sec     ) * radians/deg
# VALUE IS APPROXIMATELY 0.002635 deg

print()
print('v Creating IMU Data')
for cam in usedCams:
    for seqStr in kittiSeqs:
        seq = int(seqStr)
        print('%sReading Camera %s, Sequence %02d' % (' ' * 2, cam, seq))

        truthFile = config.getInputFiles(truthFilesDict, seq)
        if (truthFile is None):
            continue

        imuFile = config.getOutputFiles(imuFilesDict, recalcIMUData, seq)
        if (imuFile is None):
            continue

        # Read in rotation truth poses
        with h5py.File(truthFile, 'r') as f:
            rot_xyz = np.array(f['rot_xyz'])  # radians

        # Add noise to rotation piece
        noise_xyz = np.random.randn(rot_xyz.shape[0], rot_xyz.shape[1])
        noisy_rot_xyz = rot_xyz + angular_std * noise_xyz

        # Save noisy rotation angles to h5py file
        with h5py.File(imuFile, 'w') as f:
            os.chmod(imuFile, 0o666)
            f.create_dataset('noisy_rot_xyz', data=noisy_rot_xyz)
Ejemplo n.º 6
0
splitEpiLayers = config.constraintParms['splitEpiLayers']
postConstraintsLayerSize = config.constraintParms['postConstraintsLayerSize']
defaultLossFunc = config.modelParms['defaultLossFunction']
lossRotScale = config.modelParms['lossRotScale']
optimizerType = config.modelParms['optimizerType']
model_yaml_filename = config.modelParms['modelYamlFilename']

# Callbacks
checkpoint_filename = config.checkpointParms['filename']
history_filename    = config.trainingParms['histFilename']


# Get Files

modelYamlsDict = config.trainPaths['model']
modelYamls = config.getOutputFiles(modelYamlsDict, True)
saveModelPath = config.getFolderRef(modelYamls)
model_filepath = os.path.join(saveModelPath, model_yaml_filename)

checkpointFilesDict = config.trainPaths['checkpoint']
checkpointFiles = config.getOutputFiles(checkpointFilesDict, True)
saveCheckpointPath = config.getFolderRef(checkpointFiles)
checkpoint_filepath = os.path.join(saveCheckpointPath, checkpoint_filename)

historyFilesDict = config.trainPaths['history']
historyFiles = config.getOutputFiles(historyFilesDict, True)
saveHistoryPath = config.getFolderRef(historyFiles)
history_filepath = os.path.join(saveHistoryPath, history_filename)

# Get Callbacks List
callbacksList = getCallbacksList(config, history_filepath, checkpoint_filepath)
Ejemplo n.º 7
0


print()
print('v Downsampling Images and Normalizing Pixels')

for cam in usedCams:
    for seqStr in kittiSeqs:
        seq = int(seqStr)
        print('%sReading Camera %s, Sequence %02d' % (' ' * 2, cam, seq))

        standardImages = config.getInputFiles(standardImageFilesDict, seq, cam)
        if (standardImages is None):
            continue

        normImages = config.getOutputFiles(normImageFilesDict, recalcNormImages, seq, cam)
        if (normImages is None):
            continue

        normImageFolder = config.getFolderRef(normImages)

        numImages = len(standardImages)
        for idx, standardImageName in enumerate(standardImages):

            if showProgress:
                percentComplete = int(idx/numImages*100)
                if divmod(idx,300)[1]==0:
                    print('Percent Complete: %d%%' % percentComplete)

            srcImage = cv.cvtColor(cv.imread(standardImageName), cv.COLOR_BGR2GRAY)
            dstImage = cv.resize(srcImage, dsize=destImageShape[::-1], interpolation=cv.INTER_AREA)
Ejemplo n.º 8
0
# Files
poseFilesDict = config.kittiOriginal['truth']
truthFilesDict = config.kittiPrepared['truth']

print()
print('v Creating Truth Data')
for cam in usedCams:
    for seqStr in kittiSeqs:
        seq = int(seqStr)
        print('%sReading Camera %s, Sequence %02d' % (' ' * 2, cam, seq))

        poseFile = config.getInputFiles(poseFilesDict, seq)
        if (poseFile is None):
            continue

        truthFile = config.getOutputFiles(truthFilesDict, recalcTruthData, seq)
        if (truthFile is None):
            continue

        # Get true R and t from pose files

        #   Row i represents the ith pose of the left camera coordinate
        # system (z pointing forwards) via a 3x4 transformation matrix.
        # The matricies take a point in the ith coordinate system and project
        # it to the 0th coordinate system. The translational part corresponds
        # to the pose of the left camera in the ith frame with respect to the
        # 0th frame.

        # T_0_i = [  R_0_i , t_0_0toi ]
        #         [ 0_(1x3),     1    ]
Ejemplo n.º 9
0
def loadPredictions(tests, eType):
    errors_list = []
    preds_list = []
    truth_list = []
    filetruthrots_list = []

    for i, test in enumerate(tests):
        # if True:
        #     test = tests[0]
        configFile = 'exp_configs/%s.yaml' % test
        config = ThesisConfig(configFile)

        # Parameters
        name = config.expName
        numOutputs = config.modelParms['numOutputs']

        # Get Files
        evalFilesDict = config.resultPaths['evaluations']
        figFilesDict = config.resultPaths['figures']
        truthFilesDict = config.kittiPrepared['truth']

        figFolder = config.getFolderRef(
            config.getOutputFiles(figFilesDict, True))

        # Get Predictions Save File
        evalFolder = ''
        for pathSection in evalFilesDict['dir']:
            evalFolder = os.path.join(evalFolder, pathSection)
        predictionsFile = os.path.join(evalFolder, eType + '_predictions.hdf5')

        if os.path.exists(predictionsFile):

            # Load Predictions
            y_pred_real, y_true_real, evalType, min_val_epoch, min_val_loss = loadPredFile(
                predictionsFile)

            print('Min Validation Loss: %s, Epoch %s' %
                  (min_val_loss, min_val_epoch))

            # get test idxs
            # numTested = y_true_real.shape[0]
            splitFilesDict = config.kittiPrepared['split']
            splitFile = config.getInputFiles(splitFilesDict)
            with h5py.File(splitFile, 'r') as f:
                if evalType == 'test':
                    turnIdxs = np.array(f['testTurnIdxs'])
                    nonTurnIdxs = np.array(f['testNonTurnIdxs'])
                elif evalType == 'val':
                    turnIdxs = np.array(f['valTurnIdxs'])
                    nonTurnIdxs = np.array(f['valNonTurnIdxs'])
            idxs = np.sort(np.concatenate(
                (turnIdxs, nonTurnIdxs)))  #[:numTested]

            truthData = np.empty((0, 3))
            for seq in config.usedSeqs:
                truthFile = config.getInputFiles(truthFilesDict, seq)
                with h5py.File(truthFile, 'r') as f:
                    rot_xyz = np.array(f['rot_xyz'])
                truthData = np.append(truthData, rot_xyz, axis=0)
            file_truth_rots = truthData[idxs, :]

            # Calculate average loss in each direction
            errors = y_true_real - y_pred_real

            errors_list.append(errors)
            preds_list.append(y_pred_real)
            truth_list.append(y_true_real)
            filetruthrots_list.append(file_truth_rots)

        else:
            print('predictions file %s does not exist' % predictionsFile)

    return (errors_list, preds_list, truth_list, filetruthrots_list)
Ejemplo n.º 10
0

for configFile in configFiles:
    config = ThesisConfig(configFile)



    # Parameters
    name = config.expName
    numOutputs      = config.modelParms['numOutputs']

    # Get Files
    evalFilesDict = config.resultPaths['evaluations']
    figFilesDict = config.resultPaths['figures']

    figFolder = config.getFolderRef(config.getOutputFiles(figFilesDict, True))




    # Get Predictions Save File
    evalFolder = ''
    for pathSection in evalFilesDict['dir']:
        evalFolder = os.path.join(evalFolder, pathSection)
    predictionsFile = os.path.join(evalFolder, evalType+'_predictions.hdf5')


    if os.path.exists(predictionsFile):

        # Load Predictions
        with h5py.File(predictionsFile, 'r') as f:
Ejemplo n.º 11
0
from src.helpers.cfg import ThesisConfig
from src.helpers.helper_functions import getOptimizer
from src.helpers.training_helpers import getCallbacksList, getGenerator, getTrainAndValGenerators
from src.helpers.custom_loss import scaledMSE_RT

import tensorflow as tf
from keras import backend as K
import keras.losses

# Load Configuration
configFile = 'exp_configs/scale_test_4.yaml'
config = ThesisConfig(configFile)

checkpoint_filename = config.checkpointParms['filename']
checkpointFilesDict = config.trainPaths['checkpoint']
checkpointFiles = config.getOutputFiles(checkpointFilesDict, True)
saveCheckpointPath = config.getFolderRef(checkpointFiles)
checkpoint_filepath = os.path.join(saveCheckpointPath, checkpoint_filename)

numOutputs = config.modelParms['numOutputs']
lossRotScale = config.modelParms['lossRotScale']
defaultLossFunc = config.modelParms['defaultLossFunction']
if numOutputs > 3:
    lossFunc = scaledMSE_RT(lossRotScale)
    keras.losses.lossFunction = lossFunc
else:
    lossFunc = defaultLossFunc

modelPath = checkpoint_filepath.format(epoch=1)
model = load_model(modelPath)
Ejemplo n.º 12
0
# Parameters
kittiSeqs = config.kittiSeqs
usedCams = config.usedCams
usedSeqs = config.usedSeqs
splitFracs = config.splitFracs
turnThresh_rad = config.thesisKittiParms['turnThreshold'] * np.pi / 180

# Files
truthFilesDict = config.kittiPrepared['truth']
splitFilesDict = config.kittiPrepared['split']

print()
print('v Splitting Dataset')

splitFile = config.getOutputFiles(splitFilesDict)
if splitFile is None:
    print('^ Dataset Splitting Complete')
    print()
    sys.exit()

# Check if file exists
# Get Sequences Counts and Turning Indexes
truthFilesList = []
for seq in usedSeqs:
    truthFilesList.append(config.getInputFiles(truthFilesDict, seq))

idxCvt = IndexConverter(truthFilesList, turnThresh_rad)

# SPLIT TURNING INDEXES
Ejemplo n.º 13
0
#                   'exp_configs/CNN_test_15.yaml',
#                   'exp_configs/CNN_test_16.yaml',
#                   'exp_configs/CNN_test_17.yaml']

configFileList = ['exp_configs/scale_test_3.yaml']

for configFile in configFileList:
    config = ThesisConfig(configFile)

    history_filename = config.trainingParms['histFilename']
    historyFilesDict = config.trainPaths['history']
    historyFiles = config.getInputFiles(historyFilesDict)
    saveHistoryPath = config.getFolderRef(historyFiles)
    history_filepath = os.path.join(saveHistoryPath, history_filename)
    saveFigFilesDict = config.resultPaths['figures']
    figureFile = config.getOutputFiles(saveFigFilesDict, True)
    saveFigFolder = config.getFolderRef(figureFile)
    saveFigFilename = config.experiment['experiment'][
        'name'] + config.resultPaths['figures']['type']
    saveFigFile = os.path.join(saveFigFolder, saveFigFilename)

    if os.path.exists(history_filepath):
        print()
        with h5py.File(history_filepath, 'r') as f:
            epochs = np.array(f['epochs'], dtype=np.int)
            numEpochs = len(epochs)
            if 'loss' in f:
                train_loss = np.array(f['loss'])
                min_train_loss = np.min(train_loss)
                min_train_loss_epoch = (epochs[np.argmin(train_loss)])
                print('Min Training Loss: %s, Epoch %s' %