def test_AllPassiveMonsters_WithRando(self):
        wimpy = WimpyHypothesis()
        rando = RandoHypothesis()
        self.setUpDecisioner(wimpy, rando)

        # First we will start with the basic training case
        # which is the first 100 in the range
        for i in range(101):
            monster = Monster(0, [randint(1, 100)], 'passive')

            # Get the guess from the decisioner for the first 100,
            # we expect every guess to be 1
            self.assertTrue(self.decisioner.get_guess(monster.color))

            # Then we will update from this guess
            self.decisioner.update(monster.color, 1, monster.action(True))

        for i in range(5000):
            monster = Monster(0, [randint(1, 100)], 'aggressive')

            self.decisioner.get_guess(monster.color)

            # Then we will update from this guess
            self.decisioner.update(monster.color, 1, 1)

            # Flipping a coin is better than doing nothing
            self.assertGreater(rando.fitness(), wimpy.fitness())

        # Randomness should be near-even in distribution
        self.assertGreater(rando.fitness(), 0.4)
        self.assertGreater(0.6, rando.fitness())
    def test_simpleResponse_WithDrPerceptron(self):
        brave = BraveHypothesis()
        wimpy = WimpyHypothesis()
        drP = DrPerceptron()
        self.setUpDecisioner(brave, wimpy, drP)

        # First we will start with the basic training case
        # which is the first 100 in the range
        for i in range(101):
            nonAggro = 0 # this means not aggro
            color = [randint(1, 100)]
            monster = Monster(nonAggro, color, 'passive')

            # Get the guess from the decisioner for the first 100,
            # we expect every guess to be 1
            self.assertTrue(self.decisioner.get_guess(monster.color))
            # Then we will update from this guess
            self.decisioner.update(monster.color, 1, monster.action(True))

        # DrPerceptron should converge pretty quickly and be better than wimpy but not as good as brave
        for i in range(100):
            aggro = 1 # this means aggro
            color = [randint(1, 100)]
            monster = Monster(aggro, color, 'aggressive')

            # Then we will update from this guess
            self.decisioner.update(monster.color, 1, 1)

            self.assertGreater(drP.fitness(), wimpy.fitness())
            self.assertGreater(brave.fitness(), drP.fitness())
    def test_AllPassiveMonsters_WithWimpyAndBrave(self):
        brave = BraveHypothesis()
        wimpy = WimpyHypothesis()
        self.setUpDecisioner(brave, wimpy)

        # First we will start with the basic training case
        # which is the first 100 in the range
        for i in range(101):
            monster = Monster(0, [randint(1, 100)], 'passive')

            # Get the guess from the decisioner for the first 100,
            # we expect every guess to be 1
            self.assertTrue(self.decisioner.get_guess(monster.color))
            # Then we will update from this guess
            self.decisioner.update(monster.color, 1, monster.action(True))

        for i in range(5000):
            monster = Monster(0, [randint(1, 100)], 'aggressive')

            # Get the guess from the decisioner for the next 5000,
            # We expect all of them to be wimpy and thus not attack
            self.assertTrue(self.decisioner.get_guess(monster.color))

            # Then we will update from this guess
            self.decisioner.update(monster.color, 1, 1)

            # Finally we know that the wimpy hypothesis should always have
            # a greater fitness than the brave for each iteration
            self.assertGreater(brave.fitness(), wimpy.fitness())
    def test_GroupedAggroByColor_WithWimpyBraveAndKNN(self):
        brave = BraveHypothesis()
        wimpy = WimpyHypothesis()
        knn = KNearestNeighbors(3)

        self.setUpDecisioner(brave, wimpy, knn)

        def create_monster():
            color = randint(1, 100)

            # Every monster below 50 is aggressive
            if color < 50:
                return Monster(1, [color], 'aggressive')
            # Otherwise if they are above 50 they are
            # passive
            else:
                return Monster(0, [color], 'passive')

        # Next we load up the training data
        for i in range(100):
            # Create the monster and generate all the data, by default
            # we expect everything in the training period to be true
            # meaning attack for data
            monster = create_monster()
            self.assertTrue(self.decisioner.get_guess(monster.color))
            self.decisioner.update(monster.color, 1, monster.action(True))

        # Finally we need to know that normal KNN was matched as the best
        # fitness for the data set
        self.assertGreater(knn.fitness(), brave.fitness())
        self.assertGreater(knn.fitness(), wimpy.fitness())

        # Then we are going to run over all of the data sets
        # We want to also track the actual value and the maximum
        # value for comparison
        maximum_value = 5000.0
        actual_value = 0.0

        for i in range(5000):
            # Create the monster, guess on it and grab the outcome
            # which is all required information for the loop
            monster = create_monster()
            guess = self.decisioner.get_guess(monster.color)
            outcome = monster.action(guess)

            # update values for comparison after loop
            maximum_value -= monster._aggressive
            actual_value += outcome

            # 
            self.decisioner.update(monster.color, guess, outcome)

            # We need to know that KNN is still our best fit for this
            # data set
            self.assertGreater(knn.fitness(), brave.fitness())
            self.assertGreater(knn.fitness(), wimpy.fitness())

        # Finally we expect that the standard KNN process will obtain
        # within 10 percent margin of the best possible solution
        self.assertGreater(actual_value / maximum_value, 0.9)
Ejemplo n.º 5
0
class KNearestNeighborsTest(unittest.TestCase):

    def setUp(self):
        self._hypothesis = WimpyHypothesis()

    def tearDown(self):
        self._hypothesis = None

    def test_initGuess(self):
        """Test the WIMPY algorithm initializes guess to zero"""
        self.assertFalse(self._hypothesis.get_guess([1]))

    def test_fitnessInAggroEnviron(self):
        """Test the WIMPY algorithm is fit for an aggro environ"""
        self.assertEquals(0, self._hypothesis.fitness())
        for i in range(100):
            self._hypothesis.update([100], 1, 1)
        self.assertEquals(0.0, self._hypothesis.fitness())

    def test_fitnessInHippyEnviron(self):
        """Test the WIMPY algorithm is unfit for an unaggro environ"""
        self._hypothesis = WimpyHypothesis()
        for i in range(100):
            self._hypothesis.update([100], 1, -1)
        self.assertEquals(1.0, self._hypothesis.fitness())
    def test_with_all_hypothesis(self):
        brave = BraveHypothesis()
        wimpy = WimpyHypothesis()

        knn3 = KNearestNeighbors(3)
        knn5 = KNearestNeighbors(5)
        knn7 = KNearestNeighbors(7)
        knn11 = KNearestNeighbors(11)

        rando = RandoHypothesis()
        prob = SimpleProbabilityHypothesis()

#        drP3 = OptimusPerceptron(11)
#        drP5 = DrPerceptron(5)
#        drP7 = DrPerceptron(7)
#        drP11 = DrPerceptron(11)
#
        self.setUpDecisioner(brave,
                             wimpy,
                             knn3,
                             knn5,
                             knn7,
                             knn11,
                             rando,
                             prob,
#                             drP3,
#                             drP5,
#                             drP7,
#                             drP11,
                            )

        def create_monster():
            color = randint(1, 100)

            if color < 70:
                if random() >= 0.3:
                    return Monster(0, [color], 'passive')
                return Monster(1, [color], 'aggressive')
            else:
                if random() >= 0.7:
                    return Monster(0, [color], 'passive')
                return Monster(1, [color], 'aggressive')

        for i in range(100):
            monster = create_monster()
            self.decisioner.update(monster.color, 1, monster.action(True))

        maximum_value = 1000.0
        actual_value = 0.0

        for i in range(1000):
            monster = create_monster()

            guess = self.decisioner.get_guess(monster.color)
            outcome = monster.action(guess)
            self.decisioner.update(monster.color, guess, outcome)

            maximum_value -= monster._aggressive
            actual_value += outcome
    def test_frequencyResponse_forHarmonic_WithOptimusPerceptron(self):
        brave = BraveHypothesis()
        wimpy = WimpyHypothesis()
        oPP = OptimusPerceptron()
        self.setUpDecisioner(brave, wimpy, oPP)

        # First we will start with the basic training case
        # which is the first 100 in the range
        for i in range(101):
            nonAggro = 0 # this means not aggro
            color = [randint(1, 100)]
            monster = Monster(nonAggro, color, 'passive')

            # Get the guess from the decisioner for the first 100,
            # we expect every guess to be 1
            self.assertTrue(self.decisioner.get_guess(monster.color))
            # Then we will update from this guess
            self.decisioner.update(monster.color, 1, monster.action(True))

        # Dr. Perceptron should do better than brave and wimpy
        # when encountering monsters that repeat with a frequency
        # that is trainable given Dr.Perceptron's window size.
        # In otherwords, Dr. Perceptron trains on a frequency of
        # Monsters but training on a pattern is limited to the
        # input size of Dr. Perceptron (which as of this check-in
        # is 5)
        #
        # We test a staggered input with a repeating pattern
        for i in range(1000):
            aggroPattern = [0, 1, 1, 0, 1]
            aggroIdx = i%len(aggroPattern)
            color = [randint(1, 100)]
            monster = Monster(aggroPattern[aggroIdx], color, 'aggressiveish')

            # Then we will update from this guess
            self.decisioner.update(monster.color, aggroPattern[aggroIdx], aggroPattern[aggroIdx])
            # drP should always be better than wimpy
            self.assertGreater(oPP.fitness(), wimpy.fitness())

        # after a lot of training for a pattern that is harmonic within the input size Dr.P should beat out brave
        self.assertGreater(oPP.fitness(), brave.fitness())
        # Since the pattern is highly regular within the input size, the fitness should be really really close to 1.
        # With great harmony results great trainability and therefore great fitness
        self.assertGreater(oPP.fitness(), 0.99)
    def test_frequencyResponse_WithDrPerceptron(self):
        brave = BraveHypothesis()
        wimpy = WimpyHypothesis()
        drP = DrPerceptron()
        self.setUpDecisioner(brave, wimpy, drP)

        # First we will start with the basic training case
        # which is the first 100 in the range
        for i in range(101):
            nonAggro = 0 # this means not aggro
            color = [randint(1, 100)]
            monster = Monster(nonAggro, color, 'passive')

            # Get the guess from the decisioner for the first 100,
            # we expect every guess to be 1
            self.assertTrue(self.decisioner.get_guess(monster.color))
            # Then we will update from this guess
            self.decisioner.update(monster.color, 1, monster.action(True))

        # Dr. Perceptron should do better than brave and wimpy
        # when encountering monsters that repeat with a frequency
        # that is trainable given Dr.Perceptron's window size.
        # In otherwords, Dr. Perceptron trains on a frequency of
        # Monsters but training on a pattern is limited to the
        # input size of Dr. Perceptron (which as of this check-in
        # is 5)
        #
        # We test a staggered input
        for i in range(10):
            aggro = 1 # this means aggro
            passive = 0 # this means aggro
            evenMonstersPassive = i%2
            color = [randint(1, 100)]
            monster = Monster(evenMonstersPassive, color, 'aggressiveish')

            # Then we will update from this guess
            self.decisioner.update(monster.color, evenMonstersPassive, evenMonstersPassive)
            # drP should always be better than wimpy
            self.assertGreater(drP.fitness(), wimpy.fitness())

        # after 2 sets of 5 inputs drP should be better than brave
        self.assertGreater(drP.fitness(), brave.fitness())
Ejemplo n.º 9
0
class KNearestNeighborsTest(unittest.TestCase):
    def setUp(self):
        self._hypothesis = WimpyHypothesis()

    def tearDown(self):
        self._hypothesis = None

    def test_initGuess(self):
        """Test the WIMPY algorithm initializes guess to zero"""
        self.assertFalse(self._hypothesis.get_guess([1]))

    def test_fitnessInAggroEnviron(self):
        """Test the WIMPY algorithm is fit for an aggro environ"""
        self.assertEquals(0, self._hypothesis.fitness())
        for i in range(100):
            self._hypothesis.update([100], 1, 1)
        self.assertEquals(0.0, self._hypothesis.fitness())

    def test_fitnessInHippyEnviron(self):
        """Test the WIMPY algorithm is unfit for an unaggro environ"""
        self._hypothesis = WimpyHypothesis()
        for i in range(100):
            self._hypothesis.update([100], 1, -1)
        self.assertEquals(1.0, self._hypothesis.fitness())
Ejemplo n.º 10
0
    def create_monster():
        color = randint(1, 100)

        if color < 70:
            if random() < 0.3:
                return Monster(1, [color], 'aggressive')
            return Monster(0, [color], 'passive')
        else:
            if random() < 0.7:
                return Monster(1, [color], 'aggressive')
            return Monster(0, [color], 'passive')

    hyps = [
        BraveHypothesis(),
        WimpyHypothesis(),
        KNearestNeighbors(3),
        KNearestNeighbors(5),
        KNearestNeighbors(7),
        KNearestNeighbors(11),
        KNearestNeighbors(17),
        KNearestNeighbors(23),
        KNearestNeighbors(29),
        KNearestNeighbors(31),
        KNearestNeighbors(37),
        KNearestNeighbors(41),
        KNearestNeighbors(43),
        KNearestNeighbors(47),
        SimpleProbabilityHypothesis(),
        RandoHypothesis(),
        OptimusPerceptron(47),  # mod 47 universe
Ejemplo n.º 11
0
 def setUp(self):
     self._hypothesis = WimpyHypothesis()
Ejemplo n.º 12
0
 def test_fitnessInHippyEnviron(self):
     """Test the WIMPY algorithm is unfit for an unaggro environ"""
     self._hypothesis = WimpyHypothesis()
     for i in range(100):
         self._hypothesis.update([100], 1, -1)
     self.assertEquals(1.0, self._hypothesis.fitness())
Ejemplo n.º 13
0
 def setUp(self):
     self._hypothesis = WimpyHypothesis()
Ejemplo n.º 14
0
 def test_fitnessInHippyEnviron(self):
     """Test the WIMPY algorithm is unfit for an unaggro environ"""
     self._hypothesis = WimpyHypothesis()
     for i in range(100):
         self._hypothesis.update([100], 1, -1)
     self.assertEquals(1.0, self._hypothesis.fitness())