Ejemplo n.º 1
0
def main():
  
    with tf.Graph().as_default():
        args={
            'lfw_dir':'/Users/unclewang/Downloads/lfw_mtcnnpy_60',
            'lfw_batch_size':128,
            'model':'/Users/unclewang/PycharmProjects/facenet/models/facenet/20170512-110547/20170512-110547.pb',
            'image_size':160,
            'lfw_pairs':'/Users/unclewang/PycharmProjects/facenet/data/pairs.txt',
            'lfw_file_ext':'png',
            'lfw_nrof_folds':10
        }
        with tf.Session() as sess:
            
            # Read the file containing the pairs used for testing
            pairs = lfw.read_pairs(os.path.expanduser(args['lfw_pairs']))

            # Get the paths for the corresponding images
            paths, actual_issame = lfw.get_paths(os.path.expanduser(args['lfw_dir']), pairs, args['lfw_file_ext'])

            # Load the model
            facenet.load_model(args['model'])
            
            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
            phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
            
            #image_size = images_placeholder.get_shape()[1]  # For some reason this doesn't work for frozen graphs
            image_size = args['image_size']
            embedding_size = embeddings.get_shape()[1]
        
            # Run forward pass to calculate embeddings
            print('Runnning forward pass on LFW images')
            batch_size = args['lfw_batch_size']
            nrof_images = len(paths)
            nrof_batches = int(math.ceil(1.0*nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))
            for i in range(nrof_batches):
                start_index = i*batch_size
                end_index = min((i+1)*batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False, image_size)
                feed_dict = { images_placeholder:images, phase_train_placeholder:False }
                emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)
        
            tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(emb_array, 
                actual_issame, nrof_folds=args['lfw_nrof_folds'])

            print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
            print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))

            auc = metrics.auc(fpr, tpr)
            print('Area Under Curve (AUC): %1.3f' % auc)
            eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
            print('Equal Error Rate (EER): %1.3f' % eer)
Ejemplo n.º 2
0
def evaluate(sess, image_paths, embeddings, labels_batch,
             image_paths_placeholder, labels_placeholder,
             batch_size_placeholder, learning_rate_placeholder,
             phase_train_placeholder, enqueue_op, actual_issame, batch_size,
             nrof_folds, log_dir, step, summary_writer, embedding_size):
    start_time = time.time()
    # Run forward pass to calculate embeddings
    print('Running forward pass on LFW images: ', end='')

    nrof_images = len(actual_issame) * 2
    assert (len(image_paths) == nrof_images)
    labels_array = np.reshape(np.arange(nrof_images), (-1, 3))
    image_paths_array = np.reshape(np.expand_dims(np.array(image_paths), 1),
                                   (-1, 3))
    sess.run(
        enqueue_op, {
            image_paths_placeholder: image_paths_array,
            labels_placeholder: labels_array
        })
    emb_array = np.zeros((nrof_images, embedding_size))
    nrof_batches = int(np.ceil(nrof_images / batch_size))
    label_check_array = np.zeros((nrof_images, ))
    for i in xrange(nrof_batches):
        batch_size = min(nrof_images - i * batch_size, batch_size)
        emb, lab = sess.run(
            [embeddings, labels_batch],
            feed_dict={
                batch_size_placeholder: batch_size,
                learning_rate_placeholder: 0.0,
                phase_train_placeholder: False
            })
        emb_array[lab, :] = emb
        label_check_array[lab] = 1
    print('%.3f' % (time.time() - start_time))

    assert (np.all(label_check_array == 1))

    _, _, accuracy, val, val_std, far = lfw.evaluate(emb_array,
                                                     actual_issame,
                                                     nrof_folds=nrof_folds)

    print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    lfw_time = time.time() - start_time
    # Add validation loss and accuracy to summary
    summary = tf.Summary()
    #pylint: disable=maybe-no-member
    summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy))
    summary.value.add(tag='lfw/val_rate', simple_value=val)
    summary.value.add(tag='time/lfw', simple_value=lfw_time)
    summary_writer.add_summary(summary, step)
    with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f:
        f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val))
Ejemplo n.º 3
0
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder,
             phase_train_placeholder, batch_size_placeholder, embeddings,
             labels, image_paths, actual_issame, batch_size, nrof_folds,
             log_dir, step, summary_writer):
    start_time = time.time()
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')

    # Enqueue one epoch of image paths and labels
    labels_array = np.expand_dims(np.arange(0, len(image_paths)), 1)
    image_paths_array = np.expand_dims(np.array(image_paths), 1)
    sess.run(
        enqueue_op, {
            image_paths_placeholder: image_paths_array,
            labels_placeholder: labels_array
        })

    embedding_size = embeddings.get_shape()[1]
    nrof_images = len(actual_issame) * 2
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images, ))
    for _ in range(nrof_batches):
        feed_dict = {
            phase_train_placeholder: False,
            batch_size_placeholder: batch_size
        }
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab] = emb

    assert np.array_equal(
        lab_array, np.arange(nrof_images)
    ) == True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    _, _, accuracy, val, val_std, far = lfw.evaluate(emb_array,
                                                     actual_issame,
                                                     nrof_folds=nrof_folds)

    print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    lfw_time = time.time() - start_time
    # Add validation loss and accuracy to summary
    summary = tf.Summary()
    #pylint: disable=maybe-no-member
    summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy))
    summary.value.add(tag='lfw/val_rate', simple_value=val)
    summary.value.add(tag='time/lfw', simple_value=lfw_time)
    summary_writer.add_summary(summary, step)
    with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f:
        f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val))
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder,
             phase_train_placeholder, batch_size_placeholder,
             control_placeholder, embeddings, labels, image_paths,
             actual_issame, batch_size, nrof_folds, log_dir, step,
             summary_writer, stat, epoch, distance_metric, subtract_mean,
             use_flipped_images, use_fixed_image_standardization):
    start_time = time.time()
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')

    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(
        actual_issame) * 2  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0, nrof_images), 1)
    image_paths_array = np.expand_dims(
        np.repeat(np.array(image_paths), nrof_flips), 1)
    control_array = np.zeros_like(labels_array, np.int32)
    if use_fixed_image_standardization:
        control_array += np.ones_like(
            labels_array) * facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2) * facenet.FLIP
    sess.run(
        enqueue_op, {
            image_paths_placeholder: image_paths_array,
            labels_placeholder: labels_array,
            control_placeholder: control_array
        })

    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images, ))
    for i in range(nrof_batches):
        feed_dict = {
            phase_train_placeholder: False,
            batch_size_placeholder: batch_size
        }
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 10 == 9:
            print('.', end='')
            sys.stdout.flush()
    print('')
    embeddings = np.zeros((nrof_embeddings, embedding_size * nrof_flips))
    if use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:, :embedding_size] = emb_array[0::2, :]
        embeddings[:, embedding_size:] = emb_array[1::2, :]
    else:
        embeddings = emb_array

    assert np.array_equal(
        lab_array, np.arange(nrof_images)
    ) == True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    _, _, accuracy, val, val_std, far = lfw.evaluate(
        embeddings,
        actual_issame,
        nrof_folds=nrof_folds,
        distance_metric=distance_metric,
        subtract_mean=subtract_mean)

    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
    lfw_time = time.time() - start_time
    # Add validation loss and accuracy to summary
    summary = tf.Summary()
    # pylint: disable=maybe-no-member
    summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy))
    summary.value.add(tag='lfw/val_rate', simple_value=val)
    summary.value.add(tag='time/lfw', simple_value=lfw_time)
    summary_writer.add_summary(summary, step)
    with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f:
        f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val))
    stat['lfw_accuracy'][epoch - 1] = np.mean(accuracy)
    stat['lfw_valrate'][epoch - 1] = val
Ejemplo n.º 5
0
def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder,
             phase_train_placeholder, batch_size_placeholder,
             control_placeholder, embeddings, labels, image_paths,
             actual_issame, batch_size, nrof_folds, distance_metric,
             subtract_mean, use_flipped_images,
             use_fixed_image_standardization):
    # Run forward pass to calculate embeddings
    print('Runnning forward pass on LFW images')

    # Enqueue one epoch of image paths and labels
    nrof_embeddings = len(
        actual_issame) * 2  # nrof_pairs * nrof_images_per_pair
    nrof_flips = 2 if use_flipped_images else 1
    nrof_images = nrof_embeddings * nrof_flips
    labels_array = np.expand_dims(np.arange(0, nrof_images), 1)
    image_paths_array = np.expand_dims(
        np.repeat(np.array(image_paths), nrof_flips), 1)
    control_array = np.zeros_like(labels_array, np.int32)
    if use_fixed_image_standardization:
        control_array += np.ones_like(
            labels_array) * facenet.FIXED_STANDARDIZATION
    if use_flipped_images:
        # Flip every second image
        control_array += (labels_array % 2) * facenet.FLIP
    sess.run(
        enqueue_op, {
            image_paths_placeholder: image_paths_array,
            labels_placeholder: labels_array,
            control_placeholder: control_array
        })

    embedding_size = int(embeddings.get_shape()[1])
    assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size'
    nrof_batches = nrof_images // batch_size
    emb_array = np.zeros((nrof_images, embedding_size))
    lab_array = np.zeros((nrof_images, ))
    for i in range(nrof_batches):
        feed_dict = {
            phase_train_placeholder: False,
            batch_size_placeholder: batch_size
        }
        emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict)
        lab_array[lab] = lab
        emb_array[lab, :] = emb
        if i % 30 == 9:
            print('.', end='')
            sys.stdout.flush()
    print('')
    embeddings = np.zeros((nrof_embeddings, embedding_size * nrof_flips))
    if use_flipped_images:
        # Concatenate embeddings for flipped and non flipped version of the images
        embeddings[:, :embedding_size] = emb_array[0::2, :]
        embeddings[:, embedding_size:] = emb_array[1::2, :]
    else:
        embeddings = emb_array

    assert np.array_equal(
        lab_array, np.arange(nrof_images)
    ) == True, 'Wrong labels used for evaluation, possibly caused by training examples left in the input pipeline'
    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
        embeddings,
        actual_issame,
        nrof_folds=nrof_folds,
        distance_metric=distance_metric,
        subtract_mean=subtract_mean)

    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))

    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer)
Ejemplo n.º 6
0
def main(args):

    with tf.Graph().as_default():

        with tf.Session() as sess:

            # Read the file containing the pairs used for testing
            # 1. 读入之前的pairs.txt文件
            # 读入后如[['Abel_Pacheco','1','4']]
            pairs = lfw.read_pairs(os.path.expanduser(
                args.lfw_pairs))  # 剪裁好了的图片

            # Get the paths for the corresponding images
            # 获取文件路径和是否匹配关系对
            paths, actual_issame = lfw.get_paths(
                os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)
            print("paths shape =", len(paths))  # 12000
            print("paths=", paths[0:200])
            print('actual_issame shape=', len(actual_issame))  # 6000
            print('actual_issame', actual_issame[0:200])

            # Load the model
            facenet.load_model(args.model)

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")

            #image_size = images_placeholder.get_shape()[1]  # For some reason this doesn't work for frozen graphs
            image_size = args.image_size
            embedding_size = embeddings.get_shape()[1]  # 128

            # Run forward pass to calculate embeddings
            print('Runnning forward pass on LFW images')
            batch_size = args.lfw_batch_size
            nrof_images = len(paths)  # 12000
            nrof_batches = int(math.ceil(1.0 * nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))  # 12000* 128
            for i in range(nrof_batches):
                start_index = i * batch_size
                end_index = min((i + 1) * batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False,
                                           image_size)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = sess.run(
                    embeddings, feed_dict=feed_dict)

            # 输出调试信息
            embeddings1 = emb_array[0::2]  # 6000张图片 是每一个Paris中的第一张
            embeddings2 = emb_array[1::2]  # 6000张图片 是每一个Paris中的第2张
            diff = np.subtract(embeddings1, embeddings2)  # 每一个Paris中的两个向量相减
            dist = np.sum(np.square(diff),
                          1)  # 向量二范数的平方,两个向量之间距离的平方。 每一个Pari之间的欧几里得距离的平方
            # #也可以说是两张图片之间特征向量的相似度
            print(
                '------------------------------------------------------------')
            print('dist.len=', len(dist))

            # 把特征向量保存到文件中去 ,由于这里处理的数据不是很靠谱,所以,这里输出的特征无法直接用于聚类处理
            f = open(
                r'E:\MyPythonProjects\HWDB1\train1\pairs/embeddingsOfChinesepairs.txt',
                'w')
            for embedding in emb_array:
                for data in embedding:
                    f.write(str(data) + ' ')
                f.write('\n')
            f.close()

            # 把误差保存到文件中去
            f = open(
                r'E:\MyPythonProjects\HWDB1\train1\pairs/distInChinesePairs.txt',
                'w')
            for d in dist:
                f.write(str(d) + '\n')
            f.close()
            # ***************************************************************************

            tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
                emb_array, actual_issame, nrof_folds=args.lfw_nrof_folds)

            print('Accuracy: %1.3f+-%1.3f' %
                  (np.mean(accuracy), np.std(accuracy)))
            print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' %
                  (val, val_std, far))

            auc = metrics.auc(fpr, tpr)
            print('Area Under Curve (AUC): %1.3f' % auc)
            eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x),
                         0., 1.)
            print('Equal Error Rate (EER): %1.3f' % eer)