Ejemplo n.º 1
0
def produce_agg_transfert_flux(simulation=simulation,
                               year_list=range(1996, 2050, 10),
                               year_min=1996):

    tmp = simulation.cohorts.loc[:, ['net_transfers', 'pop', 'dsct']]
    tmp['running_transfers'] = tmp['net_transfers']
    tmp['net_transfers'] *= tmp['dsct'] * tmp['pop']

    tmp_2 = simulation.cohorts_alt.loc[:, ['net_transfers', 'pop', 'dsct']]
    tmp_2['running_transfers'] = tmp_2['net_transfers']
    tmp_2['net_transfers'] *= tmp_2['dsct'] * tmp_2['pop']

    for year in year_list:
        flux_df = AccountingCohorts(tmp).extract_generation(
            year=year, typ='net_transfers', age=0)
        flux_df = flux_df.xs(0, level='sex')
        flux_df.columns = [year]
        print year

        flux_df_alt = AccountingCohorts(tmp_2).extract_generation(
            year=year, typ='net_transfers', age=0)
        flux_df_alt = flux_df_alt.xs(0, level='sex')
        flux_df_alt.columns = [str(year) + '_alt']

        flux_df = concat([flux_df, flux_df_alt], axis=1)  #, ignore_index=True)
        flux_df[year] *= ((1 + simulation.discount_rate) /
                          (1 + simulation.growth_rate))**(year - year_min)
        flux_df[str(year) +
                '_alt'] *= ((1 + simulation.discount_rate_alt) /
                            (1 + simulation.growth_rate_alt))**(year -
                                                                year_min)
        print flux_df.head()

        flux_df.to_excel(str(xls) + str(year) + '_ESP_agg.xlsx', 'flux')
    gc.collect()
Ejemplo n.º 2
0
def produce_agg_transfert_flux(simulation=simulation, year_list = range(1996, 2050, 10), year_min=1996):
    
    print 'entering generation of aggregated flux of payments '
    tmp = simulation.cohorts.loc[:, ['net_transfers', 'pop', 'dsct']]
    tmp['running_transfers'] = tmp['net_transfers']
    tmp['net_transfers'] *= tmp['dsct']*tmp['pop']

    tmp_2 = simulation.cohorts_alt.loc[:, ['net_transfers', 'pop', 'dsct']]
    tmp_2['running_transfers'] = tmp_2['net_transfers']
    tmp_2['net_transfers'] *= tmp_2['dsct']*tmp_2['pop']
    print type(str(str(xls)+'\agre_agg.xlsx'))

    for year in year_list:
        flux_df = AccountingCohorts(tmp).extract_generation(year=year, typ='net_transfers', age=0)
        flux_df = flux_df.xs(0, level='sex')
        flux_df.columns = [year]
        print year

        flux_df_alt = AccountingCohorts(tmp_2).extract_generation(year=year, typ='net_transfers', age=0)
        flux_df_alt = flux_df_alt.xs(0, level='sex')
        flux_df_alt.columns = [str(year)+'_alt']
        
        flux_df = concat([flux_df, flux_df_alt], axis=1)#, ignore_index=True)
        flux_df[year] *= ((1+simulation.discount_rate)/(1+simulation.growth_rate))**(year - year_min)
        flux_df[str(year)+'_alt'] *= ((1+simulation.discount_rate_alt)/(1+simulation.growth_rate_alt))**(year - year_min)
        print flux_df.head()
    
        flux_df.to_excel(xls+'\_combine_agg_'+str(year)+'.xlsx', 'flux')
    gc.collect()
Ejemplo n.º 3
0
def simple_scenario():
    
    #Initialisation et entrée des paramètres de base :
    simulation = Simulation()
    year_length = 300
    simulation.set_year_length(nb_year=year_length)
    net_gov_wealth = -3217.7e+09
    year_gov_spending = (1094)*1e+09
    net_gov_wealth_alt = -3217.7e+09
    year_gov_spending_alt = (1094)*1e+09
    taxes_list = ['tva', 'tipp', 'cot', 'irpp', 'impot', 'property']
    payments_list = ['chomage', 'retraite', 'revsoc', 'maladie', 'educ']
    
    simulation.set_population_projection(year_length=simulation.year_length, method="exp_growth")

    #On charge la population:
    population_scenario = "projpop0760_FECbasESPbasMIGbas"
    store_pop = HDFStore(os.path.join(SRC_PATH, 'countries', country, 'sources',
                                           'Carole_Bonnet', 'pop_1996_2006.h5'))
    corrected_pop = store_pop['population']
    simulation.population = concat([corrected_pop.iloc[0:101, :], corrected_pop.iloc[1111:1212,:]]) #<- la première année TODO: c'est moche
    simulation.load_population(population_filename, population_scenario, default=False)

    simulation.population_alt = concat([corrected_pop, simulation.population_alt])

    simulation.load_profiles(profiles_filename)
    r = 0.03
    g = 0.01
    n = 0.00
    
    r_alt = r
    g_alt = g 
    n_alt = 0.00

    #On crée le témoin :
    simulation.set_tax_projection(method="aggregate", rate=g)
    simulation.set_growth_rate(g)
    simulation.set_discount_rate(r) 
    simulation.set_population_growth_rate(n)
    
    simulation.create_cohorts()
    
    simulation.set_gov_wealth(net_gov_wealth)
    simulation.set_gov_spendings(year_gov_spending, default=True, compute=True)
    simulation.cohorts.compute_net_transfers(name = 'net_transfers', taxes_list = taxes_list, payments_list = payments_list)
    simulation.create_present_values('net_transfers', default=True)
    
    #On crée le groupe test :
    simulation.set_growth_rate(g_alt, default=False)
    simulation.set_discount_rate(r_alt, default=False) 
    simulation.set_population_growth_rate(n_alt, default=False)
    
    simulation.create_cohorts(default=False)
    simulation.cohorts_alt.loc[[x>=2015 for x in simulation.cohorts_alt.index.get_level_values(2)], 'retraite'] *= (1/2)

    simulation.set_gov_wealth(net_gov_wealth_alt, default=False)
    simulation.set_gov_spendings(year_gov_spending_alt, default=False, compute=True)
    simulation.cohorts_alt.compute_net_transfers(name = 'net_transfers', taxes_list = taxes_list, payments_list = payments_list)
    simulation.create_present_values('net_transfers', default=False)
    
    #Calcul de l'IPL et de sa décomposition
    ipl_base = simulation.compute_ipl(typ='net_transfers')
    ipl_alt = simulation.compute_ipl(typ='net_transfers', default=False, precision=False)
    
    tmp = simulation.cohorts.loc[:, ['net_transfers', 'pop', 'dsct']]
    tmp['running_transfers'] = tmp['net_transfers']
    tmp['net_transfers'] *= tmp['dsct']

    tmp_2 = simulation.cohorts_alt.loc[:, ['net_transfers', 'pop', 'dsct']]
    tmp_2['running_transfers'] = tmp_2['net_transfers']
    tmp_2['net_transfers'] *= tmp_2['dsct']
    
    xls = "C:/Users/Utilisateur/Documents/GitHub/ga/src/countries/france/sources/Output_folder/"

    for year in range(1996, 2007):
        flux_df = AccountingCohorts(tmp).extract_generation(year=year, typ='net_transfers', age=0)
        flux_df = flux_df.xs(0, level='sex')
        print year

        flux_df_alt = AccountingCohorts(tmp_2).extract_generation(year=year, typ='net_transfers', age=0)
        flux_df_alt = flux_df_alt.xs(0, level='sex')
        flux_df[year] = flux_df_alt['net_transfers']
    
        flux_df.to_excel(str(xls)+str(year)+'_.xlsx', 'flux')


    print ipl_base, ipl_alt