Ejemplo n.º 1
0
def test_compute_gen_imbalance():
    size_generation = 1
    cohort = create_neutral_profiles_cohort(population=size_generation)
    simulation = Simulation()
    simulation.discount_rate = 0
    simulation.growth_rate = 0
    simulation.cohorts = cohort
    simulation.create_present_values('tax')
    gen_imbalance = simulation.compute_gen_imbalance(typ='tax')
    #     print gen_imbalance
    assert gen_imbalance == -5000.0 / (2 * 199.0)
Ejemplo n.º 2
0
def test_compute_gen_imbalance():
    size_generation = 1
    cohort = create_neutral_profiles_cohort(population = size_generation)
    simulation = Simulation()    
    simulation.discount_rate = 0
    simulation.growth_rate = 0
    simulation.cohorts = cohort
    simulation.create_present_values('tax')
    gen_imbalance = simulation.compute_gen_imbalance(typ = 'tax')
#     print gen_imbalance
    assert gen_imbalance[0] == -5000.0/(2*199.0), gen_imbalance[1] == -5000.0/(2*199.0)
Ejemplo n.º 3
0
def test_compute_gen_imbalance():
    size_generation = 1
    cohort = create_neutral_profiles_cohort(population = size_generation)
    simulation = Simulation()    
    simulation.discount_rate = 0
    simulation.growth_rate = 0
    simulation.cohorts = cohort
    simulation.create_present_values('tax')
    print simulation.aggregate_pv.tail(20).to_string()
    print simulation.cohorts.head(20).to_string()
    gen_imbalance = simulation.compute_gen_imbalance(typ = 'tax', to_return='difference')
#     print gen_imbalance, -5000.0/(2*199.0)
    assert gen_imbalance == -5000.0/(2*199.0)
Ejemplo n.º 4
0
def test():

    country = "france"
    population_filename = os.path.join(SRC_PATH, 'countries', country,
                                       'sources', 'data_fr', 'proj_pop_insee',
                                       'proj_pop.h5')
    profiles_filename = os.path.join(SRC_PATH, 'countries', country, 'sources',
                                     'data_fr', 'profiles.h5')
    CBonnet_results = os.path.join(SRC_PATH, 'countries', country, 'sources',
                                   'Carole_Bonnet', 'theoretical_results.xls')

    simulation = Simulation()
    population_scenario = "projpop0760_FECbasESPbasMIGbas"

    simulation.load_population(population_filename, population_scenario)
    simulation.load_profiles(profiles_filename)
    xls = ExcelFile(CBonnet_results)
    """
    Hypothesis set #1 : 
    actualization rate r = 3%
    growth rate g = 1%
    net_gov_wealth = -3217.7e+09 (unit : Franc Français (FF) of 1996)
    
    """

    #Setting parameters
    year_length = 200
    r = 0.03
    g = 0.01
    net_gov_wealth = -3217.7e+09
    net_gov_spendings = 0
    simulation.set_population_projection(year_length=year_length,
                                         method="exp_growth")
    simulation.set_tax_projection(method="per_capita", rate=g)
    simulation.set_growth_rate(g)
    simulation.set_discount_rate(r)
    simulation.create_cohorts()
    simulation.set_gov_wealth(net_gov_wealth)
    simulation.set_gov_spendings(net_gov_spendings)

    #Calculating net transfers
    #Net_transfers = tax paid to the state minus money recieved from the state
    #TODO: transform this in a method
    simulation.cohorts['total_taxes'] = 0
    simulation.cohorts['total_payments'] = 0

    taxes_list = ['tva', 'tipp', 'cot', 'irpp', 'impot', 'property']
    payments_list = ['chomage', 'retraite', 'revsoc', 'maladie', 'educ']

    simulation.cohorts.compute_net_transfers(name='net_transfers',
                                             taxes_list=taxes_list,
                                             payments_list=payments_list)
    """
    Reproducing the table 2 : Comptes générationnels par âge et sexe (Compte central)
    """
    #Generating generationnal accounts
    simulation.create_present_values(typ='net_transfers')
    print "PER CAPITA PV"
    print simulation.percapita_pv.xs(0, level='age').head()
    print simulation.percapita_pv.xs((0, 2007), level=['sex', 'year']).head()

    # Calculating the Intertemporal Public Liability
    ipl = simulation.compute_ipl(typ='net_transfers')
    print "------------------------------------"
    print "IPL =", ipl
    print "share of the GDP : ", ipl / 8050.6e+09 * 100, "%"
    print "------------------------------------"

    #Calculating the generational imbalance
    gen_imbalance = simulation.compute_gen_imbalance(typ='net_transfers')
    print "----------------------------------"
    print "imbalance : [n_1=", gen_imbalance[0], ", n_1-n_0=", gen_imbalance[
        1], ", n_1/n_0=", gen_imbalance[2], "]"
    print "----------------------------------"

    #Creating age classes
    cohorts_age_class = AccountingCohorts(
        simulation.percapita_pv.create_age_class(step=5))
    cohorts_age_class._types = [
        u'tva', u'tipp', u'cot', u'irpp', u'impot', u'property', u'chomage',
        u'retraite', u'revsoc', u'maladie', u'educ', u'net_transfers'
    ]
    age_class_pv_fe = cohorts_age_class.xs((1, 2007), level=['sex', 'year'])
    age_class_pv_ma = cohorts_age_class.xs((0, 2007), level=['sex', 'year'])
    print "AGE CLASS PV"
    print age_class_pv_fe.head()
    print age_class_pv_ma.head()

    #Plotting
    age_class_pv = cohorts_age_class.xs(2007,
                                        level="year").unstack(level="sex")
    age_class_pv = age_class_pv['net_transfers']
    age_class_pv.columns = ['men', 'women']
    #     age_class_pv['total'] = age_class_pv_ma['net_transfers'] + age_class_pv_fe['net_transfers']
    #     age_class_pv['total'] *= 1.0/2.0
    age_class_theory = xls.parse('Feuil1', index_col=0)

    age_class_pv['men_CBonnet'] = age_class_theory['men_Cbonnet']
    age_class_pv['women_CBonnet'] = age_class_theory['women_Cbonnet']
    age_class_pv.plot(style='--')
    plt.legend()
    plt.axhline(linewidth=2, color='black')
    plt.show()
Ejemplo n.º 5
0
def test():
    print "Entering the simulation of C. Bonnet"

    simulation = Simulation()
    population_scenario = "projpop0760_FECbasESPbasMIGbas"
    simulation.load_population(population_filename, population_scenario)

    # Adding missing population data between 1996 and 2007 :
    store_pop = HDFStore(os.path.join(SRC_PATH, "countries", country, "sources", "Carole_Bonnet", "pop_1996_2006.h5"))
    corrected_pop = store_pop["population"]
    print simulation.population.head().to_string()
    print corrected_pop.head().to_string()
    print "    longueurs des inputs"
    print "prévisions insee", len(simulation.population), "population corrigée", len(corrected_pop)

    simulation.population = concat([corrected_pop, simulation.population])
    print "    longueur après combinaison", len(simulation.population)

    # Loading profiles :
    simulation.load_profiles(profiles_filename)
    xls = ExcelFile(CBonnet_results)

    """
    Hypothesis set #1 : 
    actualization rate r = 3%
    growth rate g = 1%
    net_gov_wealth = -3217.7e+09 (unit : Franc Français (FRF) of 1996)
    non ventilated government spendings in 1996 : 1094e+09 FRF
    """

    # Setting parameters :
    year_length = 250
    simulation.year_length = year_length
    r = 0.03
    g = 0.01
    n = 0.00
    net_gov_wealth = -3217.7e09
    year_gov_spending = (1094) * 1e09

    #     avg_gov_spendings = 0
    #     # List w/ the economic affairs
    #     spending_list = [241861, 246856, 245483, 251110, 261752, 271019,
    #                      286330,    290499,    301556,    315994,    315979,    332317,
    #                      343392,    352239,    356353,    356858]
    #     count = 0
    #     for spent in spending_list:
    #         year_gov_spending = spent*1e+06*((1+g)/(1+r))**count*6.55957
    #         print year_gov_spending
    #         net_gov_spendings += year_gov_spending
    #         avg_gov_spendings += year_gov_spending
    #         count += 1

    #     avg_gov_spendings /= (count)
    #     print 'avg_gov_spendings = ', avg_gov_spendings

    # Loading simulation's parameters :
    simulation.set_population_projection(year_length=year_length, method="stable")
    simulation.set_tax_projection(method="per_capita", rate=g)
    simulation.set_growth_rate(g)
    simulation.set_discount_rate(r)
    simulation.set_population_growth_rate(n)
    simulation.create_cohorts()
    simulation.set_gov_wealth(net_gov_wealth)
    simulation.set_gov_spendings(year_gov_spending, default=True, compute=True)

    # Calculating net transfers :
    # Net_transfers = tax paid to the state minus money recieved from the state
    taxes_list = ["tva", "tipp", "cot", "irpp", "impot", "property"]
    payments_list = ["chomage", "retraite", "revsoc", "maladie", "educ"]
    simulation.cohorts.compute_net_transfers(name="net_transfers", taxes_list=taxes_list, payments_list=payments_list)

    """
    Reproducing the table 2 : Comptes générationnels par âge et sexe (Compte central)
    """
    # Generating generationnal accounts :
    year = 1996
    simulation.create_present_values(typ="net_transfers")
    print "PER CAPITA PV"
    print simulation.percapita_pv.xs(0, level="age").head(10)
    print simulation.percapita_pv.xs((0, year), level=["sex", "year"]).head(10)

    # Calculating the Intertemporal Public Liability
    ipl = simulation.compute_ipl(typ="net_transfers")
    print "------------------------------------"
    print "IPL =", ipl
    print "share of the GDP : ", ipl / 8050.6e09 * 100, "%"
    print "------------------------------------"

    # Calculating the generational imbalance
    gen_imbalance = simulation.compute_gen_imbalance(typ="net_transfers")
    print "----------------------------------"
    print "[n_1/n_0=", gen_imbalance, "]"
    print "----------------------------------"

    # Creating age classes
    cohorts_age_class = simulation.create_age_class(typ="net_transfers", step=5)
    cohorts_age_class._types = [
        u"tva",
        u"tipp",
        u"cot",
        u"irpp",
        u"impot",
        u"property",
        u"chomage",
        u"retraite",
        u"revsoc",
        u"maladie",
        u"educ",
        u"net_transfers",
    ]
    age_class_pv_fe = cohorts_age_class.xs((1, year), level=["sex", "year"])
    age_class_pv_ma = cohorts_age_class.xs((0, year), level=["sex", "year"])

    print "AGE CLASS PV"
    print age_class_pv_fe.head()
    print age_class_pv_ma.head()

    age_class_pv = concat([age_class_pv_fe, age_class_pv_ma], axis=1)
    print age_class_pv
    age_class_pv.to_excel(str(xls_adress) + "\calibration.xlsx", "compte_generation")

    # Plotting
    age_class_pv = cohorts_age_class.xs(year, level="year").unstack(level="sex")
    age_class_pv = age_class_pv["net_transfers"]
    age_class_pv.columns = ["men", "women"]
    #     age_class_pv['total'] = age_class_pv_ma['net_transfers'] + age_class_pv_fe['net_transfers']
    #     age_class_pv['total'] *= 1.0/2.0
    age_class_theory = xls.parse("Feuil1", index_col=0)

    age_class_pv["men_CBonnet"] = age_class_theory["men_Cbonnet"]
    age_class_pv["women_CBonnet"] = age_class_theory["women_Cbonnet"]
    age_class_pv.plot(style="--")
    plt.legend()
    plt.axhline(linewidth=2, color="black")
    plt.show()
Ejemplo n.º 6
0
def test():
    print 'Entering the simulation of C. Bonnet'

    simulation = Simulation()
    population_scenario = "projpop0760_FECbasESPbasMIGbas"
    simulation.load_population(population_filename, population_scenario)
    
    # Adding missing population data between 1996 and 2007 :
    store_pop = HDFStore(os.path.join(SRC_PATH, 'countries', country, 'sources',
                                           'Carole_Bonnet', 'pop_1996_2006.h5'))
    corrected_pop = store_pop['population']
    print simulation.population.head().to_string()
    print corrected_pop.head().to_string()
    print '    longueurs des inputs'
    print 'prévisions insee', len(simulation.population), 'population corrigée', len(corrected_pop)
     
    simulation.population = concat([corrected_pop, simulation.population])
    print '    longueur après combinaison',len(simulation.population)

    #Loading profiles :
    simulation.load_profiles(profiles_filename)
    xls = ExcelFile(CBonnet_results)
    
    """
    Hypothesis set #1 : 
    actualization rate r = 3%
    growth rate g = 1%
    net_gov_wealth = -3217.7e+09 (unit : Franc Français (FRF) of 1996)
    non ventilated government spendings in 1996 : 1094e+09 FRF
    """

    #Setting parameters :
    year_length = 250
    simulation.year_length = year_length
    r = 0.03
    g = 0.01
    n = 0.00
    net_gov_wealth = -3217.7e+09
    year_gov_spending = (1094)*1e+09

#     avg_gov_spendings = 0
#     # List w/ the economic affairs
#     spending_list = [241861, 246856, 245483, 251110, 261752, 271019,    
#                      286330,    290499,    301556,    315994,    315979,    332317,
#                      343392,    352239,    356353,    356858]
#     count = 0
#     for spent in spending_list:
#         year_gov_spending = spent*1e+06*((1+g)/(1+r))**count*6.55957
#         print year_gov_spending
#         net_gov_spendings += year_gov_spending
#         avg_gov_spendings += year_gov_spending
#         count += 1

#     avg_gov_spendings /= (count)
#     print 'avg_gov_spendings = ', avg_gov_spendings

    # Loading simulation's parameters :
    simulation.set_population_projection(year_length=year_length, method="stable")
    simulation.set_tax_projection(method="per_capita", rate=g)
    simulation.set_growth_rate(g)
    simulation.set_discount_rate(r) 
    simulation.set_population_growth_rate(n)
    simulation.create_cohorts()
    simulation.set_gov_wealth(net_gov_wealth)
    simulation.set_gov_spendings(year_gov_spending, default=True, compute=True)

    #Calculating net transfers :
    #Net_transfers = tax paid to the state minus money recieved from the state
    taxes_list = ['tva', 'tipp', 'cot', 'irpp', 'impot', 'property']
    payments_list = ['chomage', 'retraite', 'revsoc', 'maladie', 'educ']
    simulation.cohorts.compute_net_transfers(name = 'net_transfers', taxes_list = taxes_list, payments_list = payments_list)
    
    """
    Reproducing the table 2 : Comptes générationnels par âge et sexe (Compte central)
    """
    #Generating generationnal accounts :
    year = 1996
    simulation.create_present_values(typ = 'net_transfers')
    print "PER CAPITA PV"
    print simulation.percapita_pv.xs(0, level = 'age').head(10)
    print simulation.percapita_pv.xs((0, year), level = ['sex', 'year']).head(10)


    # Calculating the Intertemporal Public Liability
    ipl = simulation.compute_ipl(typ = 'net_transfers')
    print "------------------------------------"
    print "IPL =", ipl
    print "share of the GDP : ", ipl/8050.6e+09*100, "%"
    print "------------------------------------"
    
    #Calculating the generational imbalance
    gen_imbalance = simulation.compute_gen_imbalance(typ = 'net_transfers')
    print "----------------------------------"
    print "[n_1/n_0=", gen_imbalance,"]"
    print "----------------------------------"    
    
    
    #Creating age classes
    cohorts_age_class = simulation.create_age_class(typ = 'net_transfers', step = 5)
    cohorts_age_class._types = [u'tva', u'tipp', u'cot', u'irpp', u'impot', u'property', u'chomage', u'retraite', u'revsoc', u'maladie', u'educ', u'net_transfers']
    age_class_pv_fe = cohorts_age_class.xs((1, year), level = ['sex', 'year'])
    age_class_pv_ma = cohorts_age_class.xs((0, year), level = ['sex', 'year'])
    
    print "AGE CLASS PV"
    print age_class_pv_fe.head()
    print age_class_pv_ma.head()
    
    age_class_pv = concat([age_class_pv_fe, age_class_pv_ma], axis=1)
    print age_class_pv
    age_class_pv.to_excel(str(xls_adress)+'\calibration.xlsx', 'compte_generation')
    
    #Plotting
    age_class_pv = cohorts_age_class.xs(year, level = "year").unstack(level="sex")
    age_class_pv = age_class_pv['net_transfers']
    age_class_pv.columns = ['men' , 'women']
#     age_class_pv['total'] = age_class_pv_ma['net_transfers'] + age_class_pv_fe['net_transfers']
#     age_class_pv['total'] *= 1.0/2.0
    age_class_theory = xls.parse('Feuil1', index_col = 0)
         
    age_class_pv['men_CBonnet'] = age_class_theory['men_Cbonnet']
    age_class_pv['women_CBonnet'] = age_class_theory['women_Cbonnet']
    age_class_pv.plot(style = '--') ; plt.legend()
    plt.axhline(linewidth=2, color='black')
    plt.show()