def __init__(self, laneFinding, testImagesMode):
        self.ym_per_pix = eval(laneFinding["ym_per_pix"])
        self.xm_per_pix = eval(laneFinding["xm_per_pix"])
        self.nwindows = int(laneFinding["nwindows"])
        self.margin = int(laneFinding["margin"])
        self.minpix = int(laneFinding["minpix"])

        self.right_line = Line()
        self.left_line = Line()
        self.lane = Lane()

        self.test_images_mode = testImagesMode
Ejemplo n.º 2
0
 def GenLines(self):
     self.lines = []
     if self.lineLen < 0:
         for pa,pb in zip(self.points[:-1], self.points[1:]):
             self.lines.append(Line(pa, pb))
         if self.close:
             self.lines.append(Line(self.points[-1], self.points[0]))
     elif self.lineLen==0:
         pass
     else:
         for i in range(len(self.points))[::self.lineLen+1]:
             for j in range(self.lineLen):
                 self.lines.append(Line(*self.points[i+j:i+j+2]))
Ejemplo n.º 3
0
    def parse_input(self):
        lines = []
        input = self._input.splitlines()

        for i, content in enumerate(input):
            line = Line(i, content)
            lines.append(line)

        self._lines = lines
Ejemplo n.º 4
0
 def __init__(self, poleShape, ribsShape):
     #code to make/fit/show capsule
     capPoints = []
     # cenLines is used later to help with the trajectory transforms
     self.cenLines = []
     self.radius = ribsShape.AvgMidRibLen()/2.0
     for boo in (False, True):
         cenVec = (self.radius*poleShape.lines[0].GetUnitVec(reverse=boo))
         cen = poleShape.points[boo] + cenVec
         line = Line(cen, poleShape.points[boo])
         self.cenLines.append(Line(cen, cen + cenVec))
         line.Rotate(-math.pi/2)
         capPoints.append(line.b)
         angStep = math.pi/500
         for i in range(500):
             line.Rotate(angStep)
             capPoints.append(line.b)
     super(self.__class__, self).__init__(capPoints)
Ejemplo n.º 5
0
 def Overlay(self, seg0, seg1):
     '''transforms all of the points and lines in self by the transformation matrix that overlays seg0 on seg1.
     currently the section that deals with points only works correctly for shapes with self.lineLen = -1'''
     transMat = Line.OverlaySegMat(seg0, seg1)
     # transform points
     homoPoints = np.zeros((self.points.shape[0],4))
     homoPoints[:,:2] = self.points[:,:2]
     homoPoints[:,3] = 1
     self.points = transMat.dot(homoPoints.T).T[:,:2]
     # regenerate segments from the newly transformed points
     self.GenLines()
Ejemplo n.º 6
0
    def construct_lines(self):
        brace_points = find_all_dir_templates(self.image, brace_dir, 0.85,
                                              5000)
        all_bar_line_points = find_all_dir_templates(self.image, bar_line_dir,
                                                     0.85, 5000)
        self.line_gap = int(
            (brace_points[1][1] - brace_points[0][1] - self.line_height) / 2)

        brace_points.sort(key=lambda brace_point: brace_point[1])

        for brace_point in brace_points:
            top_left_point = (0, brace_point[1] - self.line_gap)
            line = Line(self.image, top_left_point, self.line_height,
                        self.line_gap, all_bar_line_points)
            self.lines.append(line)
class LaneFinding:
    def __init__(self, laneFinding, testImagesMode):
        self.ym_per_pix = eval(laneFinding["ym_per_pix"])
        self.xm_per_pix = eval(laneFinding["xm_per_pix"])
        self.nwindows = int(laneFinding["nwindows"])
        self.margin = int(laneFinding["margin"])
        self.minpix = int(laneFinding["minpix"])

        self.right_line = Line()
        self.left_line = Line()
        self.lane = Lane()

        self.test_images_mode = testImagesMode

    def findLines(self, img, binary_warped, pers_transform, file_name,
                  data_dir):
        # check if a previous fit is detected
        if (self.left_line.detected is False) or (self.right_line.detected is
                                                  False):
            try:
                print(file_name, "Line Fit")
                left_fit, right_fit, lanes_colored, histogram, window_fit_img = self.lineFit(
                    binary_warped)
                # if nothing was found, use previous fit
            except TypeError:
                left_fit = self.left_line.previous_fit
                right_fit = self.right_line.previous_fit
                lanes_colored = np.zeros_like(img)
        else:
            histogram = img
            window_fit_img = img
            try:
                print(file_name, "Fine Fit")
                left_fit, right_fit, lanes_colored = self.fineFit(
                    binary_warped, self.left_line.previous_fit,
                    self.right_line.previous_fit)
            except TypeError:
                try:
                    left_fit, right_fit, lanes_colored = self.lineFit(
                        binary_warped)
                # if nothing was found, use previous fit
                except TypeError:
                    left_fit = self.left_line.previous_fit
                    right_fit = self.right_line.previous_fit
                    lanes_colored = np.zeros_like(img)

        self.left_line.current_fit = left_fit
        self.right_line.current_fit = right_fit

        # Calculate base position of lane lines to get lane distance
        self.left_line.line_base_pos = left_fit[0] * (
            binary_warped.shape[0] -
            1)**2 + left_fit[1] * (binary_warped.shape[0] - 1) + left_fit[2]
        self.right_line.line_base_pos = right_fit[0] * (
            binary_warped.shape[0] -
            1)**2 + right_fit[1] * (binary_warped.shape[0] - 1) + right_fit[2]
        self.left_line.line_mid_pos = left_fit[0] * (
            binary_warped.shape[0] //
            2)**2 + left_fit[1] * (binary_warped.shape[0] // 2) + left_fit[2]
        self.right_line.line_mid_pos = right_fit[0] * (
            binary_warped.shape[0] //
            2)**2 + right_fit[1] * (binary_warped.shape[0] // 2) + right_fit[2]

        # Calculate top and bottom position of lane lines for sanity check
        self.lane.top_width = right_fit[2] - left_fit[2]
        self.lane.bottom_width = self.right_line.line_base_pos - self.left_line.line_base_pos
        self.lane.middle_width = self.right_line.line_mid_pos - self.left_line.line_mid_pos

        # Check if values make sense
        if self.sanity_check() is False:
            # If fit is not good, use previous values and indicate that lanes were not found
            if len(self.left_line.previous_fits) == 5:
                diff_left = [0.0, 0.0, 0.0]
                diff_right = [0.0, 0.0, 0.0]
                for i in range(0, 3):
                    for j in range(0, 3):
                        diff_left[i] += self.left_line.previous_fits[j][
                            i] - self.left_line.previous_fits[j + 1][i]
                        diff_right[i] += self.right_line.previous_fits[j][
                            i] - self.right_line.previous_fits[j + 1][i]

                    diff_left[i] /= 4
                    diff_right[i] /= 4

                for i in range(0, 3):
                    self.left_line.current_fit[
                        i] = self.left_line.previous_fit[i] + diff_left[i]
                    self.right_line.current_fit[
                        i] = self.right_line.previous_fit[i] + diff_right[i]
                print("prev: ", self.left_line.previous_fit)
                print("diff: ", diff_left)
                print("fit: ", self.left_line.current_fit)

                self.left_line.detected = False
                self.right_line.detected = False
            else:
                self.left_line.current_fit = self.left_line.previous_fit
                self.right_line.current_fit = self.right_line.previous_fit
                self.left_line.detected = False
                self.right_line.detected = False

        else:
            # If fit is good, use current values and indicate that lanes were found
            if not self.left_line.detected or not self.right_line.detected:
                self.left_line.previous_fits.clear()
                self.right_line.previous_fits.clear()
            self.left_line.detected = True
            self.right_line.detected = True
            self.left_line.initialized = True
            self.right_line.initialized = True
            self.left_line.frame_cnt += 1
            self.right_line.frame_cnt += 1

        # Calculate the average of the recent fits and set this as the current fit
        self.left_line.average_fit = self.average_fits(binary_warped.shape,
                                                       self.left_line)
        self.right_line.average_fit = self.average_fits(
            binary_warped.shape, self.right_line)

        self.lane.average_bottom_width, self.lane.average_top_width = self.average_width(
            binary_warped.shape)

        # Determine lane curvature and position of the vehicle
        self.left_line.radius_of_curvature = self.calc_curvature(
            binary_warped.shape, left_fit)
        self.right_line.radius_of_curvature = self.calc_curvature(
            binary_warped.shape, right_fit)
        curvature = self.left_line.radius_of_curvature + self.right_line.radius_of_curvature / 2

        self.left_line.line_base_pos = left_fit[0] * (
            binary_warped.shape[0] -
            1)**2 + left_fit[1] * (binary_warped.shape[0] - 1) + left_fit[2]
        self.right_line.line_base_pos = right_fit[0] * (
            binary_warped.shape[0] -
            1)**2 + right_fit[1] * (binary_warped.shape[0] - 1) + right_fit[2]
        vehicle_position = self.vehicle_position(binary_warped.shape[1],
                                                 self.left_line.line_base_pos,
                                                 self.right_line.line_base_pos)

        # Warp lane boundaries back & display lane boundaries, curvature and position
        lanes_marked = self.visualize_lines(binary_warped, img,
                                            self.left_line.average_fit,
                                            self.right_line.average_fit,
                                            curvature, vehicle_position,
                                            pers_transform, file_name,
                                            data_dir)

        # Set current values as previous values for next frame
        self.left_line.previous_fit = self.left_line.current_fit
        self.right_line.previous_fit = self.right_line.current_fit

        # Reset / empty current fit
        self.left_line.current_fit = [np.array([False])]
        self.right_line.current_fit = [np.array([False])]

        if self.test_images_mode:
            self.left_line.reset()
            self.right_line.reset()

        return lanes_marked, lanes_colored.astype(
            "uint8"), histogram, window_fit_img

    def lineFit(self, binary_warped):
        """
        Find and fit lane lines
        """
        # Assuming you have created a warped binary image called "binary_warped"
        # Take a histogram of the bottom half of the image
        bottom_half = binary_warped[binary_warped.shape[0] // 2:, :]
        histogram = np.sum(bottom_half, axis=0)

        # Output image for testing
        out_img = np.dstack((binary_warped, binary_warped, binary_warped))

        # Create starting point on left and right side and set them as current points
        midpoint = np.int(histogram.shape[0] // 2)
        leftx_base = np.argmax(histogram[:midpoint])
        rightx_base = np.argmax(histogram[midpoint:]) + midpoint
        leftx_current = leftx_base
        rightx_current = rightx_base

        # Parameters of sliding window
        # Number of windows
        nwindows = self.nwindows
        # Width of windows
        margin = self.margin
        # Minimum number of pixels to recenter window
        minpix = self.minpix

        # Set window height
        window_height = np.int(binary_warped.shape[0] // nwindows)

        # Find nonzero pixels
        nonzero = binary_warped.nonzero()
        nonzerox = np.array(nonzero[1])
        nonzeroy = np.array(nonzero[0])

        # Empty lists for storing lane pixel indices
        left_line_inds = []
        right_line_inds = []

        # Step through windows
        for window in range(nwindows):

            # Window boundaries:
            win_y_low = binary_warped.shape[0] - (window + 1) * window_height
            win_y_high = binary_warped.shape[0] - window * window_height
            win_xleft_low = leftx_current - margin
            win_xleft_high = leftx_current + margin
            win_xright_low = rightx_current - margin
            win_xright_high = rightx_current + margin

            # Draw the windows on the visualization image
            cv2.rectangle(out_img, (win_xleft_low, win_y_low),
                          (win_xleft_high, win_y_high), (0, 255, 0), 2)
            cv2.rectangle(out_img, (win_xright_low, win_y_low),
                          (win_xright_high, win_y_high), (0, 255, 0), 2)

            # Identify pixels within the windows
            good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high)
                              & (nonzerox >= win_xleft_low) &
                              (nonzerox < win_xleft_high)).nonzero()[0]
            good_right_inds = ((nonzeroy >= win_y_low) &
                               (nonzeroy < win_y_high) &
                               (nonzerox >= win_xright_low) &
                               (nonzerox < win_xright_high)).nonzero()[0]

            # Add the found pixels to lane line
            left_line_inds.append(good_left_inds)
            right_line_inds.append(good_right_inds)

            # Update x axis position based on pixels found
            if len(good_left_inds) > minpix:
                leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
            if len(good_right_inds) > minpix:
                rightx_current = np.int(np.mean(nonzerox[good_right_inds]))

        # Concatenate list of pixels
        try:
            left_line_inds = np.concatenate(left_line_inds)
            right_line_inds = np.concatenate(right_line_inds)
        except ValueError:
            pass

        # Get left and right lane pixel positions
        leftx = nonzerox[left_line_inds]
        lefty = nonzeroy[left_line_inds]
        rightx = nonzerox[right_line_inds]
        righty = nonzeroy[right_line_inds]

        # Color left and right line pixels
        out_img[lefty, leftx] = [255, 0, 0]
        out_img[righty, rightx] = [0, 0, 255]

        # Fit polynomial based on pixels found
        left_fit, right_fit = self.fit_poly(leftx, lefty, rightx, righty)

        # Draw Histogram
        fig = Figure()
        canvas = FigureCanvas(fig)
        ax = fig.gca()
        ax.plot(histogram, color="b")
        canvas.draw()
        buf = canvas.buffer_rgba()
        histogram_img = np.asarray(buf)

        # Draw Fit line
        left_fitx, right_fitx = self.calc_x_values(binary_warped.shape,
                                                   left_fit, right_fit)
        ploty = np.linspace(0, binary_warped.shape[0] - 1,
                            binary_warped.shape[0])
        fig = Figure()
        canvas = FigureCanvas(fig)
        ax = fig.gca()
        ax.imshow(out_img.astype("uint8"), aspect='auto')
        xlim, ylim = ax.get_xlim(), ax.get_ylim()
        ax.plot(left_fitx, ploty, color='yellow')
        ax.plot(right_fitx, ploty, color='yellow')
        ax.set_xlim(xlim)
        ax.set_ylim(ylim)
        canvas.draw()
        buf = canvas.buffer_rgba()
        window_fit_img = np.asarray(buf)

        return left_fit, right_fit, out_img, histogram_img, window_fit_img

    def fineFit(self, binary_warped, left_fit, right_fit):
        """
        Given a previously fit line, quickly try to find the line based on previous lines
        """
        # Assume you now have a new warped binary image
        # from the next frame of video (also called "binary_warped")
        # It's now much easier to find line pixels!
        # get activated pixels
        # Margin for searching around curve
        margin = self.margin

        # Grab activated pixels
        nonzero = binary_warped.nonzero()
        nonzeroy = np.array(nonzero[0])
        nonzerox = np.array(nonzero[1])

        # Mask to get non-zero pixels that are next to the curve within margin
        left_lane_inds = (
            (nonzerox >
             (left_fit[0] *
              (nonzeroy**2) + left_fit[1] * nonzeroy + left_fit[2] - margin)) &
            (nonzerox <
             (left_fit[0] *
              (nonzeroy**2) + left_fit[1] * nonzeroy + left_fit[2] + margin)))

        right_lane_inds = (
            (nonzerox >
             (right_fit[0] *
              (nonzeroy**2) + right_fit[1] * nonzeroy + right_fit[2] - margin))
            &
            (nonzerox <
             (right_fit[0] *
              (nonzeroy**2) + right_fit[1] * nonzeroy + right_fit[2] + margin))
        )

        # Extract left and right line pixel positions
        leftx = nonzerox[left_lane_inds]
        lefty = nonzeroy[left_lane_inds]
        rightx = nonzerox[right_lane_inds]
        righty = nonzeroy[right_lane_inds]

        # Generate y values for plotting
        ploty = np.linspace(0, binary_warped.shape[0] - 1,
                            binary_warped.shape[0])

        # Fit polynomial based on pixels found
        left_fit, right_fit = self.fit_poly(leftx, lefty, rightx, righty)

        left_fitx, right_fitx = self.calc_x_values(binary_warped.shape,
                                                   left_fit, right_fit)

        # Create an image to draw on and an image to show the selection window
        out_img = np.dstack(
            (binary_warped, binary_warped, binary_warped)) * 255
        window_img = np.zeros_like(out_img)

        # Color left and right line pixels
        out_img[nonzeroy[left_lane_inds],
                nonzerox[left_lane_inds]] = [255, 0, 0]
        out_img[nonzeroy[right_lane_inds],
                nonzerox[right_lane_inds]] = [0, 0, 255]

        # Generate a polygon to illustrate the search window area
        # And recast the x and y points into usable format for cv2.fillPoly()
        left_line_window1 = np.array(
            [np.transpose(np.vstack([left_fitx - margin, ploty]))])
        left_line_window2 = np.array(
            [np.flipud(np.transpose(np.vstack([left_fitx + margin, ploty])))])
        left_line_pts = np.hstack((left_line_window1, left_line_window2))

        right_line_window1 = np.array(
            [np.transpose(np.vstack([right_fitx - margin, ploty]))])
        right_line_window2 = np.array(
            [np.flipud(np.transpose(np.vstack([right_fitx + margin, ploty])))])
        right_line_pts = np.hstack((right_line_window1, right_line_window2))

        # Draw the lane onto the warped blank image
        cv2.fillPoly(window_img, np.int_([left_line_pts]), (0, 255, 0))
        cv2.fillPoly(window_img, np.int_([right_line_pts]), (0, 255, 0))
        out_img = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)

        return left_fit, right_fit, out_img

    def fit_poly(self, leftx, lefty, rightx, righty):

        # Fit a second order polynomial to each
        left_fit = np.polyfit(lefty, leftx, 2)
        right_fit = np.polyfit(righty, rightx, 2)

        return left_fit, right_fit

    def sanity_check(self):
        # Calculate widths at top and bottom
        top_width_diff = abs(self.lane.top_width - self.lane.average_top_width)
        bottom_width_diff = abs(self.lane.bottom_width -
                                self.lane.average_bottom_width)

        # Define sanity checks
        width_check_top = top_width_diff > 0.2 * self.lane.average_top_width or self.lane.top_width > 1.25 * self.lane.bottom_width
        width_check_bottom = bottom_width_diff > 0.05 * self.lane.average_bottom_width
        lane_intersect_check = self.lane.top_width < 0.0 or self.lane.bottom_width < 0.0
        curve_check = self.right_line.current_fit[
            0] * self.left_line.current_fit[0] < -0.00005 * 0.0001

        # Check if parameters are ok (skip for first frame)
        if (self.left_line.frame_cnt > 1) and (self.right_line.frame_cnt > 1):
            if width_check_bottom:
                result = False
            elif width_check_top:
                result = False
            elif lane_intersect_check:
                result = False
            elif curve_check:
                result = False
            else:
                result = True
        else:
            result = True

        return result

    def average_fits(self, img_shape, line):
        n = 3
        average_fit = [0, 0, 0]

        # Append the previous fits in case of there are no fits stored
        if len(line.previous_fits) < n:
            line.previous_fits.append(line.current_fit)
        # If list is full, replace the first fit with the current one
        if len(line.previous_fits) == n:
            line.previous_fits.pop(n - 1)
            line.previous_fits.insert(0, line.current_fit)

        # Average fit
        if len(line.previous_fits) > 0:
            for i in range(0, 3):
                total = 0
                for num in range(0, len(line.previous_fits)):
                    total = total + line.previous_fits[num][i]

                average_fit[i] = total / len(line.previous_fits)

        return average_fit

    def average_width(self, img_shape):
        sum_bottom = 0
        sum_top = 0
        n = 3
        average_bottom_width = 0
        average_top_width = 0

        if len(self.lane.previous_bottom_widths) < n:
            self.lane.previous_bottom_widths.append(self.lane.bottom_width)
        # If list is full, replace the first fit with the current one
        if len(self.lane.previous_bottom_widths) == n:
            self.lane.previous_bottom_widths.pop(n - 1)
            self.lane.previous_bottom_widths.insert(0, self.lane.bottom_width)

        # Average width
        if (len(self.lane.previous_bottom_widths) > 0):
            for i in range(0, len(self.lane.previous_bottom_widths)):
                sum_bottom = sum_bottom + self.lane.previous_bottom_widths[i]
                average_bottom_width = sum_bottom / len(
                    self.lane.previous_bottom_widths)

        if len(self.lane.previous_top_widths) < n:
            self.lane.previous_top_widths.append(self.lane.top_width)
        # If list is full, replace the first fit with the current one
        if len(self.lane.previous_top_widths) == n:
            self.lane.previous_top_widths.pop(n - 1)
            self.lane.previous_top_widths.insert(0, self.lane.top_width)

        # Average width
        if len(self.lane.previous_top_widths) > 0:
            for i in range(0, len(self.lane.previous_top_widths)):
                sum_top = sum_top + self.lane.previous_top_widths[i]
                average_top_width = sum_top / len(
                    self.lane.previous_top_widths)

        return average_bottom_width, average_top_width

    def visualize_lines(self, warped, undist, left_fit, right_fit, curvature,
                        position, persp_transform, file_name, data_dir):
        # Generate y values
        ploty = np.linspace(0, warped.shape[0] - 1, warped.shape[0])

        # Calculate x values
        left_fitx, right_fitx = self.calc_x_values(warped.shape, left_fit,
                                                   right_fit)

        # Create image to draw lines onto
        warp_zero = np.zeros_like(warped).astype(np.uint8)
        color_warp = np.dstack((warp_zero, warp_zero, warp_zero))

        # Recast the x and y points into usable format for cv2.fillPoly()
        pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
        pts_right = np.array(
            [np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
        pts = np.hstack((pts_left, pts_right))

        # Draw the lane onto the warped blank image
        cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
        cv2.polylines(color_warp,
                      np.array([pts_left], dtype=np.int32),
                      False, (255, 0, 0),
                      thickness=15)
        cv2.polylines(color_warp,
                      np.array([pts_right], dtype=np.int32),
                      False, (0, 0, 255),
                      thickness=15)
        # Warp the blank back to original image space
        newwarp = persp_transform.warpInv(color_warp, file_name, data_dir,
                                          "_lanes")

        # Combine the result with the original image
        lanes = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)

        # Texts to write on image
        curv_text = "Radius of Curvature: %.2f meters" % curvature
        if position >= 0:
            pos_text = "Position: %.2f right from center" % position
        else:
            pos_text = "Position: %.2f left from center" % abs(position)

        # Add text to image
        cv2.putText(lanes, curv_text, (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1,
                    (255, 255, 255), 2, cv2.LINE_AA)
        cv2.putText(lanes, pos_text, (30, 60), cv2.FONT_HERSHEY_SIMPLEX, 1,
                    (255, 255, 255), 2, cv2.LINE_AA)

        return lanes

    def calc_curvature(self, img_shape, fit):
        # Generate y values for plotting
        ploty = np.linspace(0, img_shape[0] - 1, img_shape[0])

        # Calculate x values using polynomial coeffs
        fitx = fit[0] * ploty**2 + fit[1] * ploty + fit[2]

        # Evaluate at bottom of image
        y_eval = np.max(ploty)

        # Fit curves with corrected axes
        curve_fit = np.polyfit(ploty * self.ym_per_pix, fitx * self.xm_per_pix,
                               2)

        # Calculate curvature values for left and right lanes
        curvature = (
            (1 +
             (2 * curve_fit[0] * y_eval * self.ym_per_pix + curve_fit[1])**2)**
            1.5) / np.absolute(2 * curve_fit[0])

        return curvature

    def vehicle_position(self, img_shape, left_lane_pos, right_lane_pos):
        # Calculate position based on midpoint - center of lanes distance
        midpoint = img_shape // 2
        center_of_lanes = (right_lane_pos + left_lane_pos) / 2
        position = midpoint - center_of_lanes

        # Get value in meters
        real_position = position * self.xm_per_pix

        return real_position

    def calc_x_values(self, img_shape, left_fit, right_fit):
        # Generate y values for plotting
        ploty = np.linspace(0, img_shape[0] - 1, img_shape[0])

        # Calculate x values using polynomial coeffs
        left_fitx = left_fit[0] * ploty**2 + left_fit[1] * ploty + left_fit[2]
        right_fitx = right_fit[0] * ploty**2 + right_fit[
            1] * ploty + right_fit[2]

        return left_fitx, right_fitx
Ejemplo n.º 8
0
def test_intersect():
    line1 = Line(Vector([1, 1]), 2)
    line2 = Line(Vector([1, -1]), 2)
    intersect = line1.intersection(line2)
    assert intersect.coordinates[0] == pytest.approx(2, abs=1e-3)
    assert intersect.coordinates[1] == pytest.approx(0, abs=1e-3)
Ejemplo n.º 9
0
    def choose_line(self):

        self.redactor.curr_tool = Line(self.redactor)
        self.turn_back_buttons()
        self.redactor.ui.Line.setStyleSheet('background-color: ' +
                                            self.button_selected_bg + ';')
Ejemplo n.º 10
0
def test_Line_not_parallel():
    line1 = Line(Vector([1, 1.1]), 1)
    line2 = Line(Vector([1, 1]), 2)
    assert line1 != line2
    assert not line1.isParallel(line2)
Ejemplo n.º 11
0
def test_Line_ne():
    line1 = Line(Vector([1, 1]), 1)
    line2 = Line(Vector([-3, -3]), 3)
    assert line1 != line2
Ejemplo n.º 12
0
def test_Line_eq():
    line1 = Line(Vector([1, 1]), 1)
    line2 = Line(Vector([-3, -3]), -3)
    assert line1 == line2
Ejemplo n.º 13
0
def test_Line_init_labels():
    line1 = Line(normal_vector=Vector([2, 2]), constant_term=3)
    assert isinstance(line1, Line)
    assert line1.normal_vector == Vector([2, 2])
    assert line1.constant_term == 3
Ejemplo n.º 14
0
def test_Line_init_nolabels():
    line1 = Line(Vector([1, 1]), 4)
    assert isinstance(line1, Line)
    assert line1.normal_vector == Vector([1, 1])
    assert line1.constant_term == 4
Ejemplo n.º 15
0
def test_null_Line():
    line1 = Line()
    assert isinstance(line1, Line)
    assert line1.normal_vector == Vector([0, 0])
    assert line1.constant_term == 0
Ejemplo n.º 16
0
    rline.radius_of_curvature = mean_rad

    cv2.putText(result, "Radius of Curvature = " + str(mean_rad),
                (10, 50), cv2.FONT_HERSHEY_PLAIN, fontScale=2, color=(255, 255, 255))
    dist_str = "Vehicle is " + str(-car_dist) + " right off the center." if car_dist < 0 else "Vehicle is " + str(car_dist) + " left off the center."
    cv2.putText(result, dist_str, (10, 100), cv2.FONT_HERSHEY_PLAIN, fontScale=2, color=(255, 255, 255))

    return result

def main():
    """
    Main method of the programm.
    :return:
    """
    # detect lanes in the video file
    white_output = VIDEO_OUTPUT
    clip1 = VideoFileClip(VIDEO_PATH)
    white_clip = clip1.fl_image(process_image)
    white_clip.write_videofile(white_output, audio=False)

if __name__ == '__main__':
    # initialize camera undistortion
    ret, mtx, dist, rvecs, tvecs = dc.get_dist_coeff()
    # initialize line
    lline = Line()
    rline = Line()

    # run
    main()

Ejemplo n.º 17
0
 def OverlayOnCell(self, capsuleShape):
     self.Overlay(capsuleShape.cenLines[0], Line((0,0),(1,0)))
Ejemplo n.º 18
0
def test_intersect_parallel():
    line1 = Line(Vector([2, 2]), 1)
    line2 = Line(Vector([1, 1]), 2)
    assert line1.intersection(line2) == None
Ejemplo n.º 19
0
def test_intersect_parallel_identical():
    line1 = Line(Vector([2, 2]), 2)
    line2 = Line(Vector([1, 1]), 1)
    assert str(line1.intersection(line2)) == "2x_1 + 2x_2 = 2"
Ejemplo n.º 20
0
from src.line import Line
from src.linsys import LinearSystem
from src.plane import Plane
from src.vector import Vector
from src.hyperplane import Hyperplane

answers = []

# Quiz1

# 1  4.046x + 2.836y = 1.21
#  10.115x + 7.09y  = 3.025
A = 4.046
B = 2.836
k1 = 1.21
line1 = Line(normal_vector=Vector([A, B]), constant_term=k1)
C = 10.115
D = 7.09
k2 = 3.025
line2 = Line(normal_vector=Vector([C, D]), constant_term=k2)
answers.append(round(line1.intersection(line2), 3))

# 2  7.204x + 3.182y = 8.68
#   8.172x + 4.114y = 9.883

A = 7.204
B = 3.182
k1 = 8.68
line1 = Line(normal_vector=Vector([A, B]), constant_term=k1)
C = 8.172
D = 4.114