Ejemplo n.º 1
0
def nway_analysis(full_raster, meta):
    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, _, _ = cdPCA.format_raster(full_raster)
    trialR = trialR.squeeze()  # squeezes out probe
    R, C, S, T = trialR.shape

    # calculates full LDA. i.e. considering all 4 categories
    LDA_projection, LDA_transformation = cLDA.fit_transform_over_time(
        trialR, 1)
    dprime = cDP.pairwise_dprimes(LDA_projection.squeeze())

    # calculates floor (ctx shuffle) and ceiling (simulated data)
    sim_dprime = np.empty([meta['montecarlo']] + list(dprime.shape))
    shuf_dprime = np.empty([meta['montecarlo']] + list(dprime.shape))

    ctx_shuffle = trialR.copy()

    pbar = ProgressBar()
    for rr in pbar(range(meta['montecarlo'])):
        # ceiling: simulates data, calculates dprimes
        sim_trial = np.random.normal(np.mean(trialR, axis=0),
                                     np.std(trialR, axis=0),
                                     size=[R, C, S, T])
        sim_projection = cLDA.transform_over_time(
            cLDA._reorder_dims(sim_trial), LDA_transformation)
        sim_dprime[rr, ...] = cDP.pairwise_dprimes(
            cLDA._recover_dims(sim_projection).squeeze())

        ctx_shuffle = shuffle(ctx_shuffle, shuffle_axis=2, indie_axis=0)
        shuf_projection, _ = cLDA.fit_transform_over_time(ctx_shuffle)
        shuf_dprime[rr, ...] = cDP.pairwise_dprimes(shuf_projection.squeeze())

    return dprime, shuf_dprime, sim_dprime
Ejemplo n.º 2
0
def dPCA_fourway_analysis(site, probe, meta):
    # recs = load(site, remote=True, rasterfs=meta['raster_fs'], recache=False)
    recs = load(site, rasterfs=meta['raster_fs'], recache=rec_recache)

    if len(recs) > 2:
        print(f'\n\n{recs.keys()}\n\n')

    rec = recs['trip0']
    sig = rec['resp']

    # calculates response realiability and select only good cells to improve analysis
    r_vals, goodcells = signal_reliability(sig,
                                           r'\ASTIM_*',
                                           threshold=meta['reliability'])
    goodcells = goodcells.tolist()

    # get the full data raster Context x Probe x Rep x Neuron x Time
    raster = src.data.rasters.raster_from_sig(
        sig,
        probe,
        channels=goodcells,
        contexts=meta['transitions'],
        smooth_window=meta['smoothing_window'],
        raster_fs=meta['raster_fs'],
        zscore=meta['zscore'])

    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, R, _ = cdPCA.format_raster(raster)
    trialR, R = trialR.squeeze(axis=3), R.squeeze(axis=2)  # squeezes out probe
    Re, C, S, T = trialR.shape

    # calculates full dPCA. i.e. considering all 4 categories
    dPCA_projection, dPCA_transformation = cdPCA.fit_transform(R, trialR)
    dprime = cDP.pairwise_dprimes(dPCA_projection,
                                  observation_axis=0,
                                  condition_axis=1)

    # calculates floor (ctx shuffle) and ceiling (simulated data)
    sim_dprime = np.empty([meta['montecarlo']] + list(dprime.shape))
    shuf_dprime = np.empty([meta['montecarlo']] + list(dprime.shape))

    ctx_shuffle = trialR.copy()
    # pbar = ProgressBar()
    for rr in range(meta['montecarlo']):
        # ceiling: simulates data, calculates dprimes
        sim_trial = np.random.normal(np.mean(trialR, axis=0),
                                     np.std(trialR, axis=0),
                                     size=[Re, C, S, T])
        sim_projection = cdPCA.transform(sim_trial, dPCA_transformation)
        sim_dprime[rr, ...] = cDP.pairwise_dprimes(sim_projection,
                                                   observation_axis=0,
                                                   condition_axis=1)

        ctx_shuffle = shuffle(ctx_shuffle, shuffle_axis=2, indie_axis=0)
        shuf_projection = cdPCA.transform(ctx_shuffle, dPCA_transformation)
        shuf_dprime[rr, ...] = cDP.pairwise_dprimes(shuf_projection,
                                                    observation_axis=0,
                                                    condition_axis=1)

    return dprime, shuf_dprime, sim_dprime, goodcells
Ejemplo n.º 3
0
def full_dPCA_dprimes(site, contexts, probes, meta):
    raster, goodcells = _load_site_formated_raste(site, contexts, probes, meta)

    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, R, _ = cdPCA.format_raster(raster)

    # calculates full dPCA. i.e. considering all 4 categories
    _, trialZ, dpca = cdPCA._cpp_dPCA(R, trialR)
    dPCA_projection = trialZ['ct'][:, 0, ...]
    dprime = cDP.pairwise_dprimes(dPCA_projection,
                                  observation_axis=0,
                                  condition_axis=1,
                                  flip=meta['dprime_absolute'])

    # calculates the variance explained. special case for full dpca, not present in other dprime approaches
    var_capt = cdPCA.variance_captured(dpca, R)

    # Shuffles the rasters n times and organizes in an array with the same shape the raster plus one dimension
    # with size n containing each shuffle
    # calculates the pairwise dprime
    rep, ctx, prb, tme = dPCA_projection.shape
    transition_pairs = list(itt.combinations(contexts, 2))

    print(f"\nshuffling {meta['montecarlo']} times")
    rng = np.random.default_rng(42)

    shuf_projections = np.empty([meta['montecarlo'], rep, ctx, prb, tme])

    shuf_trialR = trialR.copy()

    for rr in range(meta['montecarlo']):
        shuf_trialR = shuffle(shuf_trialR,
                              shuffle_axis=2,
                              indie_axis=0,
                              rng=rng)
        shuf_R = np.mean(shuf_trialR, axis=0)

        # saves the first regularizer to speed things up.
        if rr == 0:
            _, shuf_trialZ, shuf_dpca = cdPCA._cpp_dPCA(shuf_R, shuf_trialR)
            regularizer = shuf_dpca.regularizer
        else:
            _, shuf_trialZ, dpca = cdPCA._cpp_dPCA(
                shuf_R, shuf_trialR, {'regularizer': regularizer})

        shuf_projections[rr, ...] = shuf_trialZ['ct'][:, 0, ...]

    shuffled_dprime = cDP.pairwise_dprimes(shuf_projections,
                                           observation_axis=1,
                                           condition_axis=2,
                                           flip=meta['dprime_absolute'])

    # add dimension for single PC, for compatibility with single cell arrays
    dprime = np.expand_dims(dprime, axis=0)
    shuffled_dprime = np.expand_dims(shuffled_dprime, axis=1)

    return dprime, shuffled_dprime, goodcells, var_capt
Ejemplo n.º 4
0
def fit_transform(site, probe, meta, part):
    recs = load(site)

    if len(recs) > 2:
        print(f'\n\n{recs.keys()}\n\n')

    rec = recs['trip0']
    sig = rec['resp']

    # calculates response realiability and select only good cells to improve analysis
    r_vals, goodcells = signal_reliability(sig,
                                           r'\ASTIM_*',
                                           threshold=meta['reliability'])
    goodcells = goodcells.tolist()

    # get the full data raster Context x Probe x Rep x Neuron x Time
    raster = src.data.rasters.raster_from_sig(
        sig,
        probe,
        channels=goodcells,
        contexts=meta['transitions'],
        smooth_window=meta['smoothing_window'],
        raster_fs=meta['raster_fs'],
        part=part,
        zscore=meta['zscore'])

    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, _, _ = cdPCA.format_raster(raster)
    trialR = trialR.squeeze()  # squeezes out probe

    # calculates full LDA. i.e. considering all 4 categories
    LDA_projection, LDA_weights = cLDA.fit_transform_over_time(trialR, 1)
    dprime = cDP.pairwise_dprimes(LDA_projection.squeeze())

    return dprime, LDA_projection, LDA_weights
Ejemplo n.º 5
0
def single_cell_dprimes(site, contexts, probes, meta):
    """
    calculated the dprime between context for all probes and for all cells in a site. Calculates significance using
    montecarlo shuffling of the context identity
    :param site: string  identifying the site
    :param probes: list of probe numbers
    :param meta: dict with meta parameters
    :return: dprime (ndarray with shape Unit x Ctx_pair x Probe x Time),
             shuffled_dprimes (ndarray with shape Montecarlo x Unit x Ctx_pair x Probe x Time),
             goocells (list of strings)
    """
    raster, goodcells = _load_site_formated_raste(site, contexts, probes, meta)

    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, _, _ = cdPCA.format_raster(raster)
    rep, chn, ctx, prb, tme = trialR.shape
    transition_pairs = list(itt.combinations(contexts, 2))

    dprime = cDP.pairwise_dprimes(
        trialR,
        observation_axis=0,
        condition_axis=2,
        flip=meta['dprime_absolute'])  # shape Cell x CtxPair x Probe x Time

    # Shuffles the rasters n times and organizes in an array with the same shape the raster plus one dimension
    # with size n containing each shuffle, then calculates the pairwise dprime

    print(f"\nshuffling {meta['montecarlo']} times")
    rng = np.random.default_rng(42)

    shuf_trialR = np.empty((meta['montecarlo'], rep, chn, ctx, prb, tme))
    ctx_shuffle = trialR.copy()

    for rr in range(meta['montecarlo']):
        shuf_trialR[rr, ...] = shuffle(ctx_shuffle,
                                       shuffle_axis=2,
                                       indie_axis=0,
                                       rng=rng)

    shuffled_dprime = cDP.pairwise_dprimes(shuf_trialR,
                                           observation_axis=1,
                                           condition_axis=3,
                                           flip=meta['dprime_absolute'])

    return dprime, shuffled_dprime, goodcells, None
Ejemplo n.º 6
0
def fit_transform(site, probe, meta, part):
    recs = load(site)

    if len(recs) > 2:
        print(f'\n\n{recs.keys()}\n\n')

    rec = recs['trip0']
    sig = rec['resp']

    # calculates response realiability and select only good cells to improve analysis
    r_vals, goodcells = signal_reliability(sig,
                                           r'\ASTIM_*',
                                           threshold=meta['reliability'])
    goodcells = goodcells.tolist()

    raster = src.data.rasters.raster_from_sig(
        sig,
        probe,
        channels=goodcells,
        contexts=meta['transitions'],
        smooth_window=meta['smoothing_window'],
        raster_fs=meta['raster_fs'],
        part=part,
        zscore=meta['zscore'])

    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, R, _ = cdPCA.format_raster(raster)
    trialR, R = trialR.squeeze(), R.squeeze()  # squeezes out probe

    _, dPCA_projection, _, dpca = cdPCA._cpp_dPCA(R,
                                                  trialR,
                                                  significance=False,
                                                  dPCA_parms={})
    dPCA_projection = dPCA_projection['ct'][:, 0, ...]
    dPCA_weights = np.tile(dpca.D['ct'][:, 0][:, None, None],
                           [1, 1, R.shape[-1]])

    dprime = cDP.pairwise_dprimes(dPCA_projection)

    return dprime, dPCA_projection, dPCA_weights, dpca
Ejemplo n.º 7
0
def dPCA_fourway_analysis(site, probe, meta):
    recs = load(site)

    if len(recs) > 2:
        print(f'\n\n{recs.keys()}\n\n')

    rec = recs['trip0']
    sig = rec['resp']

    # calculates response realiability and select only good cells to improve analysis
    r_vals, goodcells = signal_reliability(sig,
                                           r'\ASTIM_*',
                                           threshold=meta['reliability'])
    goodcells = goodcells.tolist()

    # get the full data raster Context x Probe x Rep x Neuron x Time
    raster = src.data.rasters.raster_from_sig(
        sig,
        probe,
        channels=goodcells,
        contexts=meta['transitions'],
        smooth_window=meta['smoothing_window'],
        raster_fs=meta['raster_fs'],
        zscore=meta['zscore'])

    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, R, _ = cdPCA.format_raster(raster)
    trialR, R = trialR.squeeze(), R.squeeze()  # squeezes out probe
    Re, C, S, T = trialR.shape

    # calculates full dPCA. i.e. considering all 4 categories
    def fit_transformt(R, trialR):
        _, dPCA_projection, _, dpca = cdPCA._cpp_dPCA(R,
                                                      trialR,
                                                      significance=False,
                                                      dPCA_parms={})
        dPCA_projection = dPCA_projection['ct'][:, 0, ]
        dPCA_transformation = np.tile(dpca.D['ct'][:, 0][:, None, None],
                                      [1, 1, T])
        return dPCA_projection, dPCA_transformation

    dPCA_projection, dPCA_transformation = fit_transformt(R, trialR)
    dprime = cDP.pairwise_dprimes(dPCA_projection)

    # calculates floor (ctx shuffle) and ceiling (simulated data)
    sim_dprime = np.empty([meta['montecarlo']] + list(dprime.shape))
    shuf_dprime = np.empty([meta['montecarlo']] + list(dprime.shape))

    ctx_shuffle = trialR.copy()

    pbar = ProgressBar()
    for rr in pbar(range(meta['montecarlo'])):
        # ceiling: simulates data, calculates dprimes
        sim_trial = np.random.normal(np.mean(trialR, axis=0),
                                     np.std(trialR, axis=0),
                                     size=[Re, C, S, T])
        sim_projection = cLDA.transform_over_time(
            cLDA._reorder_dims(sim_trial), dPCA_transformation)
        sim_dprime[rr, ...] = cDP.pairwise_dprimes(
            cLDA._recover_dims(sim_projection).squeeze())

        ctx_shuffle = shuffle(ctx_shuffle, shuffle_axis=2, indie_axis=0)
        shuf_projection = cLDA.transform_over_time(
            cLDA._reorder_dims(ctx_shuffle), dPCA_transformation)
        shuf_dprime[rr, ...] = cDP.pairwise_dprimes(
            cLDA._recover_dims(shuf_projection).squeeze())

    return dprime, shuf_dprime, sim_dprime
Ejemplo n.º 8
0
def probewise_LDA_dprimes(site, contexts, probes, meta):
    """
    performs dimensionality reduction with LDA done independently for each probe. the uses the discriminated projection
    to calculate the dprime between context for all probes in the site. Calculates
    significance using montecarlo shuffling of the context identity.
    :param site: string  identifying the site
    :param probes: list of probe numbers
    :param meta: dict with meta parameters
    :return: dprime (ndarray with shape Ctx_pair x Probe x Time),
             shuffled_dprimes (ndarray with shape Montecarlo x Ctx_pair x Probe x Time),
             goocells (list of strings)
    """
    raster, goodcells = _load_site_formated_raste(site, contexts, probes, meta)

    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, R, _ = cdPCA.format_raster(raster)
    rep, unt, ctx, prb, tme = trialR.shape
    transition_pairs = list(itt.combinations(contexts, 2))

    # iterates over each probe
    dprime = np.empty([len(transition_pairs), prb, tme])
    shuffled_dprime = np.empty(
        [meta['montecarlo'],
         len(transition_pairs), prb, tme])

    for pp in probes:
        probe_idx = probes.index(pp)
        probe_trialR = trialR[..., probe_idx, :]

        # calculates LDA considering all 4 categories
        LDA_projection, _ = cLDA.fit_transform_over_time(probe_trialR)
        LDA_projection = LDA_projection.squeeze(
            axis=1)  # shape Trial x Context x Time
        dprime[:, probe_idx, :] = cDP.pairwise_dprimes(
            LDA_projection,
            observation_axis=0,
            condition_axis=1,
            flip=meta['dprime_absolute'])

        # Shuffles the rasters n times and organizes in an array with the same shape as the original raster plus one
        # dimension with size meta['montecarlo'] containing each shuffle
        # calculates the pairwise dprime
        print(f"\nshuffling {meta['montecarlo']} times")
        rng = np.random.default_rng(42)

        shuf_projections = np.empty([meta['montecarlo'], rep, ctx, tme])
        shuf_projections[:] = np.nan

        shuf_trialR = probe_trialR.copy()

        for rr in range(meta['montecarlo']):
            shuf_trialR = shuffle(shuf_trialR,
                                  shuffle_axis=2,
                                  indie_axis=0,
                                  rng=rng)
            shuf_LDA_projection, _ = cLDA.fit_transform_over_time(shuf_trialR)
            shuf_projections[rr, ...] = shuf_LDA_projection.squeeze(
                axis=1)  # shape Trial x Context x Time

        shuffled_dprime[:, :, probe_idx, :] = cDP.pairwise_dprimes(
            shuf_projections,
            observation_axis=1,
            condition_axis=2,
            flip=meta['dprime_absolute'])
    # add dimension for single PC, for compatibility with single cell arrays
    dprime = np.expand_dims(dprime, axis=0)
    shuffled_dprime = np.expand_dims(shuffled_dprime, axis=1)

    return dprime, shuffled_dprime, goodcells, None
Ejemplo n.º 9
0
def probewise_dPCA_dprimes(site, contexts, probes, meta):
    """
    performs dimensionality reduction with dPCA done independently for each probe. Then uses the first context dependent
    demixed principal component to calculated the dprime between context for all probes in the site. Calculates
    significance using montecarlo shuffling of the context identity.
    :param site: string  identifying the site
    :param probes: list of probe numbers
    :param meta: dict with meta parameters
    :return: dprime (ndarray with shape PC x Ctx_pair x Probe x Time),
             shuffled_dprimes (ndarray with shape Montecarlo x PC x Ctx_pair x Probe x Time),
             goocells (list of strings)
    """
    raster, goodcells = _load_site_formated_raste(site, contexts, probes, meta)

    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, R, _ = cdPCA.format_raster(raster)
    rep, unt, ctx, prb, tme = trialR.shape
    transition_pairs = list(itt.combinations(contexts, 2))

    # iterates over each probe
    dprime = np.empty([len(transition_pairs), prb, tme])
    shuffled_dprime = np.empty(
        [meta['montecarlo'],
         len(transition_pairs), prb, tme])

    var_capt = list()
    for pp in probes:
        probe_idx = probes.index(pp)
        probe_trialR = trialR[..., probe_idx, :]
        probe_R = R[..., probe_idx, :]

        # calculates dPCA considering all 4 categories
        _, trialZ, dpca = cdPCA._cpp_dPCA(probe_R, probe_trialR)
        var_capt.append(cdPCA.variance_captured(dpca, probe_R))
        dPCA_projection = trialZ['ct'][:, 0, ...]
        dprime[:, probe_idx, :] = cDP.pairwise_dprimes(
            dPCA_projection,
            observation_axis=0,
            condition_axis=1,
            flip=meta['dprime_absolute'])

        # Shuffles the rasters n times and organizes in an array with the same shape as the original raster plus one
        # dimension with size meta['montecarlo'] containing each shuffle
        # calculates the pairwise dprime
        print(f"\nshuffling {meta['montecarlo']} times")
        rng = np.random.default_rng(42)

        shuf_projections = np.empty([meta['montecarlo'], rep, ctx, tme])
        shuf_projections[:] = np.nan

        shuf_trialR = probe_trialR.copy()
        for rr in range(meta['montecarlo']):
            shuf_trialR = shuffle(shuf_trialR,
                                  shuffle_axis=2,
                                  indie_axis=0,
                                  rng=rng)
            shuf_R = np.mean(shuf_trialR, axis=0)

            #saves the first regularizer to speed things up.
            if rr == 0:
                _, shuf_trialZ, shuf_dpca = cdPCA._cpp_dPCA(
                    shuf_R, shuf_trialR)
                regularizer = shuf_dpca.regularizer
            else:
                _, shuf_trialZ, dpca = cdPCA._cpp_dPCA(
                    shuf_R, shuf_trialR, {'regularizer': regularizer})

            shuf_projections[rr, :] = shuf_trialZ['ct'][:, 0, ...]

        shuffled_dprime[:, :, probe_idx, :] = cDP.pairwise_dprimes(
            shuf_projections,
            observation_axis=1,
            condition_axis=2,
            flip=meta['dprime_absolute'])

    # add dimension for single PC, for compatibility with single cell arrays
    dprime = np.expand_dims(dprime, axis=0)
    shuffled_dprime = np.expand_dims(shuffled_dprime, axis=1)

    return dprime, shuffled_dprime, goodcells, var_capt
Ejemplo n.º 10
0
def twoway_analysis(site, probe, meta):
    recs = load(site)

    if len(recs) > 2:
        print(f'\n\n{recs.keys()}\n\n')

    rec = recs['trip0']
    sig = rec['resp']

    # calculates response realiability and select only good cells to improve analysis
    r_vals, goodcells = signal_reliability(sig,
                                           r'\ASTIM_*',
                                           threshold=meta['reliability'])
    goodcells = goodcells.tolist()

    # outer lists to save the dprimes foe each pair of ctxs
    dprime = list()
    shuf_dprime = list()
    sim_dprime = list()

    for transitions in itt.combinations(meta['transitions'], 2):

        # get the full data raster Context x Probe x Rep x Neuron x Time
        raster = src.data.rasters.raster_from_sig(
            sig,
            probe,
            channels=goodcells,
            contexts=transitions,
            smooth_window=meta['smoothing_window'],
            raster_fs=meta['raster_fs'],
            zscore=meta['zscore'])

        # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
        trialR, _, _ = cdPCA.format_raster(raster)
        trialR = trialR.squeeze()  # squeezes out probe
        R, C, S, T = trialR.shape

        # calculates LDA across the two selected transitions categories
        LDA_projection, LDA_transformation = cLDA.fit_transform_over_time(
            trialR, 1)
        dp = cDP.pairwise_dprimes(LDA_projection.squeeze())
        dprime.append(dp)

        # calculates floor (ctx shuffle) and ceiling (simulated data)
        sim_dp = np.empty([meta['montecarlo']] + list(dp.shape))
        shuf_dp = np.empty([meta['montecarlo']] + list(dp.shape))

        ctx_shuffle = trialR.copy()

        pbar = ProgressBar()
        for rr in pbar(range(meta['montecarlo'])):
            # ceiling: simulates data, calculates dprimes
            sim_trial = np.random.normal(np.mean(trialR, axis=0),
                                         np.std(trialR, axis=0),
                                         size=[R, C, S, T])
            sim_projection = cLDA.transform_over_time(
                cLDA._reorder_dims(sim_trial), LDA_transformation)
            sim_dp[rr, ...] = cDP.pairwise_dprimes(
                cLDA._recover_dims(sim_projection).squeeze())

            ctx_shuffle = shuffle(ctx_shuffle, shuffle_axis=2, indie_axis=0)
            shuf_projection, _ = cLDA.fit_transform_over_time(ctx_shuffle)
            shuf_dp[rr, ...] = cDP.pairwise_dprimes(shuf_projection.squeeze())

        shuf_dprime.append(shuf_dp)
        sim_dprime.append(sim_dp)

    # orders the list into arrays of the same shape as the fourwise analysis: MonteCarlo x Pair x Time

    dprime = np.concatenate(dprime, axis=0)
    shuf_dprime = np.concatenate(shuf_dprime, axis=1)
    sim_dprime = np.concatenate(sim_dprime, axis=1)

    return dprime, shuf_dprime, sim_dprime
Ejemplo n.º 11
0
def cell_dprime(site, probe, meta):
    # recs = load(site, remote=True, rasterfs=meta['raster_fs'], recache=False)
    recs = load(site, rasterfs=meta['raster_fs'], recache=rec_recache)
    if len(recs) > 2:
        print(f'\n\n{recs.keys()}\n\n')

    rec = recs['trip0']
    sig = rec['resp']

    # calculates response realiability and select only good cells to improve analysis
    r_vals, goodcells = signal_reliability(sig,
                                           r'\ASTIM_*',
                                           threshold=meta['reliability'])
    goodcells = goodcells.tolist()

    # get the full data raster Context x Probe x Rep x Neuron x Time
    raster = src.data.rasters.raster_from_sig(
        sig,
        probe,
        channels=goodcells,
        contexts=meta['transitions'],
        smooth_window=meta['smoothing_window'],
        raster_fs=meta['raster_fs'],
        zscore=meta['zscore'],
        part='probe')

    # trialR shape: Trial x Cell x Context x Probe x Time; R shape: Cell x Context x Probe x Time
    trialR, R, _ = cdPCA.format_raster(raster)
    trialR, R = trialR.squeeze(axis=3), R.squeeze(axis=2)  # squeezes out probe

    rep, chn, ctx, tme = trialR.shape

    trans_pairs = [
        f'{x}_{y}' for x, y in itt.combinations(meta['transitions'], 2)
    ]

    dprime = cDP.pairwise_dprimes(
        trialR, observation_axis=0,
        condition_axis=2)  # shape CellPair x Cell x Time

    # Shuffles the rasters n times and organizes in an array with the same shape the raster plus one dimension
    # with size n containing each shuffle

    shuffled = list()
    # pbar = ProgressBar()
    print(f"\nshuffling {meta['montecarlo']} times")
    for tp in trans_pairs:
        shuf_trialR = np.empty([meta['montecarlo'], rep, chn, 2, tme])
        shuf_trialR[:] = np.nan

        tran_idx = np.array(
            [meta['transitions'].index(t) for t in tp.split('_')])
        ctx_shuffle = trialR[:, :, tran_idx, :].copy()

        for rr in range(meta['montecarlo']):
            shuf_trialR[rr, ...] = shuffle(ctx_shuffle,
                                           shuffle_axis=2,
                                           indie_axis=0)

        shuffled.append(
            cDP.pairwise_dprimes(shuf_trialR,
                                 observation_axis=1,
                                 condition_axis=3))

    shuffled = np.stack(shuffled, axis=1).squeeze(axis=0).swapaxes(
        0, 1)  # shape Montecarlo x ContextPair x Cell x Time

    return dprime, shuffled, goodcells, trans_pairs