def eval_test(net, test_path): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False output_dir = './output' model_path = args.Dataset+ '_trained_model.h5' model_name = os.path.basename(model_path).split('.')[0] if not os.path.exists(output_dir): os.mkdir(output_dir) output_dir = os.path.join(output_dir, 'dm_' + model_name) if not os.path.exists(output_dir): os.mkdir(output_dir) trained_model = os.path.join(model_path) network.load_net(trained_model, net) net.cuda() net.eval() test_loader = ImageDataLoader(test_path, None, 'test_split', shuffle=False, gt_downsample=True, pre_load=True , Dataset=args.Dataset) for blob in test_loader: im_data = blob['data'] net.training = False density_map = net(im_data) density_map = density_map.data.cpu().numpy() new_dm= density_map.reshape([ density_map.shape[2], density_map.shape[3] ]) np.savetxt( output_dir + 'output_' + blob['fname'].split('.')[0] +'.csv', new_dm, delimiter=',', fmt='%.6f') return net
def evaluate_model_minibatch(trained_model, data_loader): # net = CrowdCounter() # net = CrowdCounter_counterr() # net = CrowdCounter_cnterr_l1() net = CrowdCounter_cnterr_l1_out_minibatch() # net = torch.nn.DataParallel(CrowdCounter_cnterr_l1_out(), device_ids=[4, 5]) network.load_net(trained_model, net) net.cuda() net.eval() mae = 0.0 mse = 0.0 for blob in data_loader: im_data = blob['data'] gt_data = blob['gt_density'] density_map = net(im_data, gt_data) density_map = density_map.data.cpu().numpy() gt_count = np.sum(gt_data) et_count = np.sum(density_map) mae += abs(gt_count - et_count) mse += ((gt_count - et_count) * (gt_count - et_count)) mae = mae / data_loader.get_num_samples() mse = np.sqrt(mse / data_loader.get_num_samples()) return mae, mse
def init_model(self, model_path=None): if model_path is not None: network.load_net(model_path, self.model) else: network.weights_normal_init(self.model, dev=1e-6) # network.load_net('../../pruned_VGG.h5', self.model.front_end, skip=True) # network.load_net("../../vgg16.h5", self.model.front_end, skip=True) def calpara(model): print('---------- Networks initialized -------------') num_params = 0 for param in model.parameters(): num_params += param.numel() print('[Network] Total number of parameters : %.3f M' % (num_params / 1e6)) print('-----------------------------------------------') calpara(self.model) network.weights_normal_init(self.loss_fn_, dev=0.01) if len(self.opt.gpus) > 0: assert (torch.cuda.is_available()) self.model.to(self.device) #self.model = torch.nn.DataParallel(self.model, self.opt.gpus) # multi-GPUs if self.opt.loss is not None and 'SSIM' in self.opt.loss: self.loss_fn_.to(self.device) #self.loss_fn = torch.nn.DataParallel(self.loss_fn_, self.opt.gpus) # multi-GPUs else: self.loss_fn = self.loss_fn_
def evaluate_model(trained_model, data_loader): #net = CrowdCounter_cnterr_l1_out() net = CrowdCounter_cnterr_LP() network.load_net(trained_model, net) net.cuda() net.eval() mae = 0.0 mse = 0.0 # no gradient calculation with torch.no_grad(): for blob in data_loader: im_data = blob['data'] gt_data = blob['gt_density'] im_data = im_data.cuda() gt_data = gt_data.cuda() density_map = net(im_data, gt_data) density_map = density_map.data.cpu().numpy() gt_data = gt_data.data.cpu().numpy() gt_count = np.sum(gt_data) et_count = np.sum(density_map) mae += abs(gt_count - et_count) mse += ((gt_count - et_count) * (gt_count - et_count)) mae = mae / data_loader.get_num_samples() mse = np.sqrt(mse / data_loader.get_num_samples()) return mae, mse
def pre_MCNN(): MCNN_model_path = './saved_models/mcnn_shtechA_58.h5' #MCNN模型路径 net = CrowdCounter() trained_model = os.path.join(MCNN_model_path) network.load_net(trained_model, net) net.cuda() net.eval() return net
def __init__(self): test_model_path = r'E:\PycharmProjects\crowdcount_8\best_models\model_20190318_DPLNet\shanghaitechA\pool_4_64.06\saved_models_shtA\shtechA_13.h5' # test_model_path = r'.\best_models\model_20190318_DPLNet\trancos\pool_4_3.08_4.39_5.79_7.62\saved_models_trancos\trancos_889.h5' self.alpha = 0.5 self.net = CrowdCount() network.load_net(test_model_path, self.net) self.net.cuda() self.net.eval()
def evaluate_model(trained_model, data_loader): net = CrowdCounter() network.load_net(trained_model, net) net.cuda() net.eval() mae = 0.0 mse = 0.0 for blob in data_loader: im_data = blob['data'] gt_data = blob['gt_density'] density_map = net.forward(im_data, gt_data) density_map = density_map.data.cpu().numpy() gt_count = np.sum(gt_data) et_count = np.sum(density_map) mae += abs(gt_count - et_count) mse += ((gt_count - et_count) * (gt_count - et_count)) mae = mae / data_loader.get_num_samples() mse = np.sqrt(mse / data_loader.get_num_samples()) return mae, mse
import os import torch import numpy as np import cv2 from src.utils import gray_to_bgr from src.crowd_count import CrowdCount from src import network from src.utils import ndarray_to_tensor alpha = 0.5 test_model_path = test_model_path = r'./saved_models_shtA/shtechA_31_5217.h5' net = CrowdCount() network.load_net(test_model_path, net) net.cuda() net.eval() # cap = cv2.VideoCapture(r'E:\PycharmProjects\data\video\MVI_1582.MOV') cap = cv2.VideoCapture(r'E:\PycharmProjects\data\video\DJI_0001.MOV') # cap = cv2.VideoCapture(0) if not cap.isOpened(): raise Exception('can not connect to camera') out = cv2.VideoWriter('test_cam_output.mp4', cv2.VideoWriter_fourcc(*'H264'), 30.0, (1920, 1080)) index = 0 # calculate error on the test dataset while cap.isOpened():
model_path = 'C:/Users/jalee/Desktop/FYP/saved_models/mall/MCNN-final-1/MCNN-final-1_mall_6_crop_50.h5' #model_path = 'C:/Users/jalee/Desktop/FYP/saved_models/schtechA/MCNN-ver3/MCNN-ver3_schtechA_35_crop_50.h5' #model_path = 'C:/Users/jalee/Desktop/FYP/saved_models/schtechA/MCNN-ver2/MCNN-ver2_schtechA_54_crop_50.h5' #input_video_path = 'C:/Users/jalee/Desktop/FYP/test/video/output.mp4' input_video_path = 'C:/Users/jalee/Desktop/FYP/Test1.mp4' vs = FileVideoStream(input_video_path).start() # vs = VideoStream(src=0).start() time.sleep(2.0) fps = FPS().start() net = CrowdCounter_cnterr_LP() net.cuda() network.load_net(model_path, net) frame_num = 0 clear_count = 0 array_init = [] array_final = [] path_list = [] new_pts_added = [] min_dist = 8 max_dist = 30 while True: frame = vs.read() frame = cv2.resize(frame, (640, 480)) # 720p - 1280 x 720 unedited_frame = frame.copy()
def open_model(model_path): model = CrowdCounter() network.load_net(model_path, model) model.eval() return model
def evaluate_model(model_path, data): net = CrowdCount() network.load_net(model_path, net) net.cuda() net.eval() build_ssim = SSIM(window_size=11) game = GridAverageMeanAbsoluteError() mae = 0.0 mse = 0.0 psnr = 0.0 ssim = 0.0 game_0 = 0.0 game_1 = 0.0 game_2 = 0.0 game_3 = 0.0 index = 0 for blob in data: image_data = blob['image'] ground_truth_data = blob['density'] roi = blob['roi'] # filename = blob['filename'] if image_data.shape[0] != 1: raise Exception('invalid image batch size (%d) for evaluation' % image_data.shape[0]) estimate_map, _ = net(image_data, roi=roi) ground_truth_data = ground_truth_data.data.cpu().numpy() density_map = estimate_map.data.cpu().numpy() ground_truth_count = np.sum(ground_truth_data) estimate_count = np.sum(density_map) mae += abs(ground_truth_count - estimate_count) mse += (ground_truth_count - estimate_count)**2 psnr += build_psnr(ground_truth_data, density_map) ssim += build_ssim(ndarray_to_tensor(ground_truth_data), ndarray_to_tensor(density_map)).item() game_0 += game.calculate_error(ground_truth_data, density_map, 0) game_1 += game.calculate_error(ground_truth_data, density_map, 1) game_2 += game.calculate_error(ground_truth_data, density_map, 2) game_3 += game.calculate_error(ground_truth_data, density_map, 3) index += 1 result_dict = dict() result_dict['name'] = os.path.basename(model_path) result_dict['number'] = int(index) result_dict['mae'] = float(mae / index) result_dict['mse'] = float(np.sqrt(mse / index)) result_dict['psnr'] = float(psnr / index) result_dict['ssim'] = float(ssim / index) result_dict['game_0'] = float(game_0 / index) result_dict['game_1'] = float(game_1 / index) result_dict['game_2'] = float(game_2 / index) result_dict['game_3'] = float(game_3 / index) return result_dict
f.write('MAE: %0.2f, MSE: %0.2f' % (mae,mse)) f.close() if __name__ == '__main__': torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False # data_path = './data/original/shanghaitech/part_B_final/test_data/images/' # gt_path = './data/original/shanghaitech/part_B_final/test_data/ground_truth_csv/' data_path = './data/original/shanghaitech/part_A_final/test_data/images/' gt_path = './data/original/shanghaitech/part_A_final/test_data/ground_truth_csv/' model_path = './Shanghai_A_Retrain_eps_1_5/saved_models//MCNN_Shanghai_A.h5' model = CrowdCounter() trained_model = os.path.join(model_path) network.load_net(trained_model, model) model.to(device) model.eval() data_loader = ImageDataLoader(data_path, gt_path, shuffle=False, gt_downsample=True, pre_load=True) eps_list = [0, 0.25, 0.5, 0.75, 1] print(model_path) epoch_robust_bound(data_loader, model, device, epsilon_try=0.25)
# load net # net = CrowdCounter() # net = CrowdCounter_cnterr_l1_out() # net = CrowdCounter_cnterr_LA() net = CrowdCounter_cnterr_LP() use_model = True if use_model: #model = 'C:/Users/jalee/Desktop/FYP/saved_models/UCSD/MCNN-no_prior_training/MCNN-no_prior_training_UCSD_3_crop_50.h5' #model = 'C:/Users/jalee/Desktop/FYP/saved_models/schtechA/MCNN-ver2/MCNN-ver2_schtechA_54_crop_50.h5' #model = 'C:/Users/jalee/Desktop/FYP/saved_models/schtechA/MCNN-ver1/MCNN-ver1_schtechA_43_crop_50.h5' #model = 'C:/Users/jalee/Desktop/FYP/saved_models/schtechA/MCNN-ver3/MCNN-ver3_schtechA_35_crop_50.h5' model = 'C:/Users/jalee/Desktop/FYP/saved_models/mall/MCNN-final-1/MCNN-final-1_mall_35_crop_50.h5' #model = 'C:/Users/jalee/Desktop/FYP/saved_models/mall/MCNN-final-2/MCNN-final-2_mall_191_crop_50.h5' network.load_net(model, net) else: network.weights_normal_init(net, dev=0.01) # load pretained model # model_path = './final_models/acspnet_shtechA_400_crop_9.h5' # single branch loading # trained_model = os.path.join(model_path) # network.load_net(trained_model, net) net.cuda() net.train() params = list(net.parameters())
def testimage(modelname, camname): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False vis = False save_output = False #test data and model file path if camname == 0: data_path = '../data/test/images/' else: data_path = '../data/test/images2/' if modelname == 'A': model_path = './final_models/cmtl_shtechA_204.h5' else: model_path = './final_models/cmtl_shtechB_768.h5' print("Model name:", modelname, " Camname: ", camname) gt_flag = False if gt_flag: gt_path = '../dataset/ShanghaiTech/part_A/test_data/ground_truth/' # ============================================================================= # for i in range(1, 4): # gt_name = os.path.join(gt_path,'img_' + format(i, '04') + '_ann.mat') # print(gt_name) # x = loadmat(gt_name) # print (len(x['annPoints'])) # # ============================================================================= output_dir = './output/' model_name = os.path.basename(model_path).split('.')[0] file_results = os.path.join(output_dir, 'results_' + model_name + '_.txt') if not os.path.exists(output_dir): os.mkdir(output_dir) output_dir = os.path.join(output_dir, 'density_maps_' + model_name) if not os.path.exists(output_dir): os.mkdir(output_dir) #load test data data_loader = ImageDataLoader(data_path, shuffle=False, gt_downsample=True, pre_load=True) net = CrowdCounter() trained_model = os.path.join(model_path) network.load_net(trained_model, net) net.cuda() net.eval() mae = 0.0 mse = 0.0 i = 1 #df = pd.read_csv("../etcount.csv") #df = df.set_index('IMG_NAME') #df['GROUND_TRUTH'] = 0.0 #df['MTL-v4-A10'] = 0.0 for blob in data_loader: if gt_flag: gt_name = os.path.join( gt_path, 'GT_' + format(blob['fname'].split('.')[0]) + '.mat') x = loadmat(gt_name) #gt_count = len(x['image_info'][0][0][0][0][0]) #df.at[blob['fname'].split('.')[0], 'GROUND_TRUTH'] = gt_count i += 1 im_data = blob['data'] density_map = net(im_data) density_map = density_map.data.cpu().numpy() x = len(density_map[0][0]) y = len(density_map[0][0][0]) half = (int)(x / 2) density_map1 = density_map[0][0][0:half][:] density_map2 = density_map[0][0][half:][:] print(x, y) et_c1 = np.sum(density_map1) et_c2 = np.sum(density_map2) side = 'none' if et_c1 > et_c2: side = 'right' else: side = 'left' print(et_c1, et_c2) et_count = np.sum(density_map) print(blob['fname'].split('.')[0], ' Model Estimated count : ', et_count) #df.at[blob['fname'].split('.')[0], 'MTL-v4-A'] = et_count if vis: utils.display_results(im_data, density_map) if save_output: utils.save_density_map( density_map, output_dir, 'output_' + blob['fname'].split('.')[0] + '.png') return (et_count, side) #df.to_csv('../etcount.csv') #testimage('A', 1)
def single_img_estimate(input_path): data_path = input_path gt_path = './data/formatted_trainval/mall_dataset/rgb_val_den/' + input_path.split( '/')[-1].replace('.jpg', '.csv') # branch pre-train model_path = './final_models/mcnn_mall_perspective_28_ms.h5' output_dir = './demo_output/' gt_dir = './demo_gt/' model_name = os.path.basename(model_path).split('.')[0] file_results = os.path.join(output_dir, 'results_' + model_name + '_.txt') if not os.path.exists(output_dir): os.mkdir(output_dir) output_dir = os.path.join(output_dir, 'density_maps_' + model_name) if not os.path.exists(output_dir): os.mkdir(output_dir) if not os.path.exists(gt_dir): os.mkdir(gt_dir) gt_dir = os.path.join(gt_dir, 'density_maps_' + model_name) if not os.path.exists(gt_dir): os.mkdir(gt_dir) net = CrowdCounter() trained_model = os.path.join(model_path) network.load_net(trained_model, net) net.cuda() net.eval() mae = 0.0 mse = 0.0 # load test data # downsample = True data_loader = SingleImageDataLoader(data_path, gt_path, shuffle=False, gt_downsample=True, pre_load=False) # downsample = False # data_loader = ImageDataLoader(data_path, gt_path, shuffle=False, gt_downsample=True, pre_load=False) for blob in data_loader: im_data = blob['data'] gt_data = blob['gt_density'] t.tic() density_map = net(im_data, gt_data, False) density_map = density_map.data.cpu().numpy() duration = t.toc() print("time duration:" + str(duration)) gt_count = np.sum(gt_data) et_count = np.sum(density_map) mae += abs(gt_count - et_count) mse += ((gt_count - et_count) * (gt_count - et_count)) if vis: utils.display_results(im_data, gt_data, density_map) if save_output: utils.save_demo_density_map( density_map, output_dir, 'output_' + blob['fname'].split('.')[0] + '.png') gt_data = 255 * gt_data / np.max(gt_data) gt_data = gt_data.astype(np.uint8) gt_data = cv2.applyColorMap(gt_data, cv2.COLORMAP_JET) cv2.imwrite( os.path.join(gt_dir, 'gt_' + blob['fname'].split('.')[0] + '.png'), gt_data) print('\nMAE: %0.2f, MSE: %0.2f' % (mae, mse)) f = open(file_results, 'w') f.write('MAE: %0.2f, MSE: %0.2f' % (mae, mse)) f.close() return (output_dir + '/output_' + blob['fname'].split('.')[0] + '.png', gt_dir + '/gt_' + blob['fname'].split('.')[0] + '.png', mae, mse, gt_count, et_count)
gt_path = './data-oilpalm/oilpalm-test/ground_truth_csv/' model_path = './oilpalm_saved_models/mcnn_oilpalm_70.h5' output_dir = './output/' model_name = os.path.basename(model_path).split('.')[0] file_results = os.path.join(output_dir, 'results_' + model_name + '_.txt') if not os.path.exists(output_dir): os.mkdir(output_dir) output_dir = os.path.join(output_dir, 'density_maps_' + model_name) if not os.path.exists(output_dir): os.mkdir(output_dir) net = CrowdCounter() trained_model = os.path.join(model_path) network.load_net(trained_model, net) net.cuda() net.eval() mae = 0.0 rmse = 0.0 mrmse = 0.0 # load test data data_loader = ImageDataLoader(data_path, gt_path, shuffle=False, gt_downsample=True, pre_load=True) for blob in data_loader: im_data = blob['data']
def single_img_estimate(input_img): self_data_path = input_img # print('get data path!') gt_path = './data/mall_demo/rgb_den/' + self_data_path.split( '/')[-1].replace('.jpg', '.csv') # print('get gt path!') # branch pre-train model_path = './final_models/ms_pool_deconv_skip_mall_60_ms.h5' self_output_dir = './data/mall_demo/demo_output/' self_gt_dir = './data/mall_demo/demo_gt/' model_name = os.path.basename(model_path).split('.')[0] file_results = os.path.join(self_output_dir, 'results_' + model_name + '.txt') if not os.path.exists(self_output_dir): os.mkdir(self_output_dir) self_output_dir = os.path.join(self_output_dir, 'den_' + model_name) if not os.path.exists(self_output_dir): os.mkdir(self_output_dir) if not os.path.exists(self_gt_dir): os.mkdir(self_gt_dir) gt_dir = os.path.join(self_gt_dir, 'gt_' + model_name) if not os.path.exists(self_gt_dir): os.mkdir(self_gt_dir) # print('mkdir done!') net = CrowdCounter_cnterr_l1_out() trained_model = os.path.join(model_path) network.load_net(trained_model, net) net.cuda(3) net.eval() mae = 0.0 mse = 0.0 # load test data # downsample = True # data_loader = ImageDataLoader(data_path, gt_path, shuffle=False, gt_downsample=True, pre_load=False) # downsample = False data_loader = SingleImageDataLoader(self_data_path, gt_path, shuffle=False, gt_downsample=False, pre_load=False) for blob in data_loader: im_data = blob['data'] gt_data = blob['gt_density'] t.tic() density_map = net(im_data, gt_data, is_training=False) density_map = density_map.data.cpu().numpy() duration = t.toc() print("time duration:" + str(duration)) gt_count = np.sum(gt_data) et_count = np.sum(density_map) mae += abs(gt_count - et_count) mse += ((gt_count - et_count) * (gt_count - et_count)) if vis: utils.display_results(im_data, gt_data, density_map) if save_output: utils.save_demo_density_map( density_map, self_output_dir, 'output_' + blob['fname'].split('.')[0] + '.png') gt_data = 255 * gt_data / np.max(gt_data) gt_data = gt_data.astype(np.uint8) gt_data = cv2.applyColorMap(gt_data, cv2.COLORMAP_JET) cv2.imwrite( os.path.join(self_gt_dir, 'gt_' + blob['fname'].split('.')[0] + '.png'), gt_data) print('\nMAE: %0.2f, MSE: %0.2f' % (mae, mse)) # f = open(file_results, 'w') # f.write('MAE: %0.2f, MSE: %0.2f' % (mae, mse)) # f.close() # et_path = self.output_dir + 'output_' + blob['fname'].split('.')[0] + '.png' # gt_path = self.gt_dir+'gt_'+blob['fname'].split('.')[0]+'.png' return (self_output_dir + '/output_' + blob['fname'].split('.')[0] + '.png', self_gt_dir + '/gt_' + blob['fname'].split('.')[0] + '.png', mae, mse, gt_count, et_count)
train_gt_path_list, shuffle=True, gt_downsample=False, pre_load=True) class_wts = data_loader.get_classifier_weights() data_loader_val = ImageDataLoader(val_path_list, val_gt_path_list, shuffle=False, gt_downsample=False, pre_load=True) #load net and initialize it net = CrowdCounter(ce_weights=class_wts) # network.weights_normal_init(net, dev=0.01) network.load_net( '/home/yangxu/Experiments/crowdcount-cascaded-mtl/UCF_partB/final_models/cmtl_ucf_partB_1172.h5', net) net.cuda() net.train() params = list(net.parameters()) optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr) if not os.path.exists(output_dir): os.mkdir(output_dir) # tensorboad use_tensorboard = use_tensorboard and CrayonClient is not None if use_tensorboard: