Ejemplo n.º 1
0
def sort_findings(model, image_tuples, test_images, labels, false_positives, false_negatives,
                  fp_images, fn_images, index):
    """False positive if model says road doesn't exist, but OpenStreetMap says it does.

    False negative if model says road exists, but OpenStreetMap doesn't list it.
    """
    pred_index = 0
    for p in model.predict(test_images):
        label = labels[index][0]
        if has_ways_in_center(label, 1) and p[0] > .5:
            false_positives.append(p)
            fp_images.append(image_tuples[pred_index])
        elif not has_ways_in_center(label, 16) and p[0] <= .5:
            false_negatives.append(p)
            fn_images.append(image_tuples[pred_index])
        pred_index += 1
        index += 1
    return index, false_positives, false_negatives, fp_images, fn_images
Ejemplo n.º 2
0
def sort_findings(model, image_tuples, test_images, labels, false_positives,
                  false_negatives, fp_images, fn_images, index):
    """False positive if model says road doesn't exist, but OpenStreetMap says it does.

    False negative if model says road exists, but OpenStreetMap doesn't list it.
    """
    pred_index = 0
    for p in model.predict(test_images):
        label = labels[index][0]
        if has_ways_in_center(label, 1) and p[0] > .5:
            false_positives.append(p)
            fp_images.append(image_tuples[pred_index])
        elif not has_ways_in_center(label, 16) and p[0] <= .5:
            false_negatives.append(p)
            fn_images.append(image_tuples[pred_index])
        pred_index += 1
        index += 1
    return index, false_positives, false_negatives, fp_images, fn_images