Ejemplo n.º 1
0
def load(config, dict_name=None):
    """ Loading the dataloaders, net configs, optimiser and the head order"""
    """Loads data, net configs, optimiser and the head order

    Params:
      config: configuration for the training run
      dict_name: name of dictionary, in case a previous run is resumed

    Returns:
        [type] -- [description]
    """

    dataloaders_head_A, mapping_assignment_dataloader, mapping_test_dataloader = segmentation_create_dataloaders(
        config)

    dataloaders_head_B = dataloaders_head_A
    net = archs.__dict__[config.arch](config)

    if config.restart and dict_name is not None:
        dict = torch.load(os.path.join(config.out_dir, dict_name),
                          map_location=lambda storage, loc: storage)
        net.load_state_dict(dict["net"])

    net.cuda() if not config.nocuda else None
    net = torch.nn.DataParallel(net)
    net.train()
    optimiser = get_opt(config.opt)(net.module.parameters(), lr=config.lr)

    if config.restart:
        optimiser.load_state_dict(dict["optimiser"])

    heads = ["A", "B"]
    if hasattr(config, "head_B_first") and config.head_B_first:
        heads = ["B", "A"]

    return (dataloaders_head_A,
            dataloaders_head_B,
            mapping_assignment_dataloader,
            mapping_test_dataloader,
            net,
            optimiser,
            heads)
Ejemplo n.º 2
0
def train():
    dataloaders_head_A, mapping_assignment_dataloader, mapping_test_dataloader = \
      segmentation_create_dataloaders(config)
    dataloaders_head_B = dataloaders_head_A  # unlike for clustering datasets

    net = archs.__dict__[config.arch](config)
    if config.restart:
        dict = torch.load(os.path.join(config.out_dir, dict_name),
                          map_location=lambda storage, loc: storage)
        net.load_state_dict(dict["net"])
    net.cuda()
    net = torch.nn.DataParallel(net)
    net.train()

    optimiser = get_opt(config.opt)(net.module.parameters(), lr=config.lr)
    if config.restart:
        optimiser.load_state_dict(dict["optimiser"])

    heads = ["A", "B"]
    if hasattr(config, "head_B_first") and config.head_B_first:
        heads = ["B", "A"]

    # Results
    # ----------------------------------------------------------------------

    if config.restart:
        next_epoch = config.last_epoch + 1
        print("starting from epoch %d" % next_epoch)

        config.epoch_acc = config.epoch_acc[:next_epoch]  # in case we overshot
        config.epoch_avg_subhead_acc = config.epoch_avg_subhead_acc[:
                                                                    next_epoch]
        config.epoch_stats = config.epoch_stats[:next_epoch]

        config.epoch_loss_head_A = config.epoch_loss_head_A[:(next_epoch - 1)]
        config.epoch_loss_no_lamb_head_A = config.epoch_loss_no_lamb_head_A[:(
            next_epoch - 1)]
        config.epoch_loss_head_B = config.epoch_loss_head_B[:(next_epoch - 1)]
        config.epoch_loss_no_lamb_head_B = config.epoch_loss_no_lamb_head_B[:(
            next_epoch - 1)]
    else:
        config.epoch_acc = []
        config.epoch_avg_subhead_acc = []
        config.epoch_stats = []

        config.epoch_loss_head_A = []
        config.epoch_loss_no_lamb_head_A = []

        config.epoch_loss_head_B = []
        config.epoch_loss_no_lamb_head_B = []

        _ = segmentation_eval(
            config,
            net,
            mapping_assignment_dataloader=mapping_assignment_dataloader,
            mapping_test_dataloader=mapping_test_dataloader,
            sobel=(not config.no_sobel),
            using_IR=config.using_IR)

        print("Pre: time %s: \n %s" %
              (datetime.now(), nice(config.epoch_stats[-1])))
        sys.stdout.flush()
        next_epoch = 1

    fig, axarr = plt.subplots(6, sharex=False, figsize=(20, 20))

    if not config.use_uncollapsed_loss:
        print("using condensed loss (default)")
        loss_fn = IID_segmentation_loss
    else:
        print("using uncollapsed loss!")
        loss_fn = IID_segmentation_loss_uncollapsed

    # Train
    # ------------------------------------------------------------------------

    for e_i in xrange(next_epoch, config.num_epochs):
        print("Starting e_i: %d %s" % (e_i, datetime.now()))
        sys.stdout.flush()

        if e_i in config.lr_schedule:
            optimiser = update_lr(optimiser, lr_mult=config.lr_mult)

        for head_i in range(2):
            head = heads[head_i]
            if head == "A":
                dataloaders = dataloaders_head_A
                epoch_loss = config.epoch_loss_head_A
                epoch_loss_no_lamb = config.epoch_loss_no_lamb_head_A
                lamb = config.lamb_A

            elif head == "B":
                dataloaders = dataloaders_head_B
                epoch_loss = config.epoch_loss_head_B
                epoch_loss_no_lamb = config.epoch_loss_no_lamb_head_B
                lamb = config.lamb_B

            iterators = (d for d in dataloaders)
            b_i = 0
            avg_loss = 0.  # over heads and head_epochs (and subheads)
            avg_loss_no_lamb = 0.
            avg_loss_count = 0

            for tup in itertools.izip(*iterators):
                net.module.zero_grad()

                if not config.no_sobel:
                    pre_channels = config.in_channels - 1
                else:
                    pre_channels = config.in_channels

                all_img1 = torch.zeros(config.batch_sz, pre_channels,
                                       config.input_sz, config.input_sz).to(
                                           torch.float32).cuda()
                all_img2 = torch.zeros(config.batch_sz, pre_channels,
                                       config.input_sz, config.input_sz).to(
                                           torch.float32).cuda()
                all_affine2_to_1 = torch.zeros(config.batch_sz, 2,
                                               3).to(torch.float32).cuda()
                all_mask_img1 = torch.zeros(config.batch_sz, config.input_sz,
                                            config.input_sz).to(
                                                torch.float32).cuda()

                curr_batch_sz = tup[0][0].shape[0]
                for d_i in xrange(config.num_dataloaders):
                    img1, img2, affine2_to_1, mask_img1 = tup[d_i]
                    assert (img1.shape[0] == curr_batch_sz)

                    actual_batch_start = d_i * curr_batch_sz
                    actual_batch_end = actual_batch_start + curr_batch_sz

                    all_img1[
                        actual_batch_start:actual_batch_end, :, :, :] = img1
                    all_img2[
                        actual_batch_start:actual_batch_end, :, :, :] = img2
                    all_affine2_to_1[actual_batch_start:
                                     actual_batch_end, :, :] = affine2_to_1
                    all_mask_img1[
                        actual_batch_start:actual_batch_end, :, :] = mask_img1

                if not (curr_batch_sz
                        == config.dataloader_batch_sz) and (e_i == next_epoch):
                    print("last batch sz %d" % curr_batch_sz)

                curr_total_batch_sz = curr_batch_sz * config.num_dataloaders  # times 2
                all_img1 = all_img1[:curr_total_batch_sz, :, :, :]
                all_img2 = all_img2[:curr_total_batch_sz, :, :, :]
                all_affine2_to_1 = all_affine2_to_1[:curr_total_batch_sz, :, :]
                all_mask_img1 = all_mask_img1[:curr_total_batch_sz, :, :]

                if (not config.no_sobel):
                    all_img1 = sobel_process(all_img1,
                                             config.include_rgb,
                                             using_IR=config.using_IR)
                    all_img2 = sobel_process(all_img2,
                                             config.include_rgb,
                                             using_IR=config.using_IR)

                x1_outs = net(all_img1, head=head)
                x2_outs = net(all_img2, head=head)

                avg_loss_batch = None  # avg over the heads
                avg_loss_no_lamb_batch = None

                for i in xrange(config.num_subheads):
                    loss, loss_no_lamb = loss_fn(
                        x1_outs[i],
                        x2_outs[i],
                        all_affine2_to_1=all_affine2_to_1,
                        all_mask_img1=all_mask_img1,
                        lamb=lamb,
                        half_T_side_dense=config.half_T_side_dense,
                        half_T_side_sparse_min=config.half_T_side_sparse_min,
                        half_T_side_sparse_max=config.half_T_side_sparse_max)

                    if avg_loss_batch is None:
                        avg_loss_batch = loss
                        avg_loss_no_lamb_batch = loss_no_lamb
                    else:
                        avg_loss_batch += loss
                        avg_loss_no_lamb_batch += loss_no_lamb

                avg_loss_batch /= config.num_subheads
                avg_loss_no_lamb_batch /= config.num_subheads

                if ((b_i % 100) == 0) or (e_i == next_epoch):
                    print(
                      "Model ind %d epoch %d head %s batch: %d avg loss %f avg loss no "
                      "lamb %f "
                      "time %s" % \
                      (config.model_ind, e_i, head, b_i, avg_loss_batch.item(),
                       avg_loss_no_lamb_batch.item(), datetime.now()))
                    sys.stdout.flush()

                if not np.isfinite(avg_loss_batch.item()):
                    print("Loss is not finite... %s:" % str(avg_loss_batch))
                    exit(1)

                avg_loss += avg_loss_batch.item()
                avg_loss_no_lamb += avg_loss_no_lamb_batch.item()
                avg_loss_count += 1

                avg_loss_batch.backward()
                optimiser.step()

                torch.cuda.empty_cache()

                b_i += 1
                if b_i == 2 and config.test_code:
                    break

            avg_loss = float(avg_loss / avg_loss_count)
            avg_loss_no_lamb = float(avg_loss_no_lamb / avg_loss_count)

            epoch_loss.append(avg_loss)
            epoch_loss_no_lamb.append(avg_loss_no_lamb)

        # Eval
        # -----------------------------------------------------------------------

        is_best = segmentation_eval(
            config,
            net,
            mapping_assignment_dataloader=mapping_assignment_dataloader,
            mapping_test_dataloader=mapping_test_dataloader,
            sobel=(not config.no_sobel),
            using_IR=config.using_IR)

        print("Pre: time %s: \n %s" %
              (datetime.now(), nice(config.epoch_stats[-1])))
        sys.stdout.flush()

        axarr[0].clear()
        axarr[0].plot(config.epoch_acc)
        axarr[0].set_title("acc (best), top: %f" % max(config.epoch_acc))

        axarr[1].clear()
        axarr[1].plot(config.epoch_avg_subhead_acc)
        axarr[1].set_title("acc (avg), top: %f" %
                           max(config.epoch_avg_subhead_acc))

        axarr[2].clear()
        axarr[2].plot(config.epoch_loss_head_A)
        axarr[2].set_title("Loss head A")

        axarr[3].clear()
        axarr[3].plot(config.epoch_loss_no_lamb_head_A)
        axarr[3].set_title("Loss no lamb head A")

        axarr[4].clear()
        axarr[4].plot(config.epoch_loss_head_B)
        axarr[4].set_title("Loss head B")

        axarr[5].clear()
        axarr[5].plot(config.epoch_loss_no_lamb_head_B)
        axarr[5].set_title("Loss no lamb head B")

        fig.canvas.draw_idle()
        fig.savefig(os.path.join(config.out_dir, "plots.png"))

        if is_best or (e_i % config.save_freq == 0):
            net.module.cpu()
            save_dict = {
                "net": net.module.state_dict(),
                "optimiser": optimiser.state_dict()
            }

            if e_i % config.save_freq == 0:
                torch.save(save_dict,
                           os.path.join(config.out_dir, "latest.pytorch"))
                config.last_epoch = e_i  # for last saved version

            if is_best:
                torch.save(save_dict,
                           os.path.join(config.out_dir, "best.pytorch"))

                with open(os.path.join(config.out_dir, "best_config.pickle"),
                          'wb') as outfile:
                    pickle.dump(config, outfile)

                with open(os.path.join(config.out_dir, "best_config.txt"),
                          "w") as text_file:
                    text_file.write("%s" % config)

            net.module.cuda()

        with open(os.path.join(config.out_dir, "config.pickle"),
                  'wb') as outfile:
            pickle.dump(config, outfile)

        with open(os.path.join(config.out_dir, "config.txt"),
                  "w") as text_file:
            text_file.write("%s" % config)

        if config.test_code:
            exit(0)
Ejemplo n.º 3
0
if not hasattr(old_config, "num_sub_heads"):
    old_config.num_sub_heads = old_config.num_heads

if not hasattr(old_config, "use_doersch_datasets"):
    old_config.use_doersch_datasets = False

with open(os.path.join(old_config.out_dir, "config.pickle"), "wb") as outfile:
    pickle.dump(old_config, outfile)

with open(os.path.join(old_config.out_dir, "config.txt"), "w") as text_file:
    text_file.write("%s" % old_config)

# Model ------------------------------------------------------

dataloaders_head_A, mapping_assignment_dataloader, mapping_test_dataloader = segmentation_create_dataloaders(
    old_config)
dataloaders_head_B = dataloaders_head_A  # unlike for clustering datasets

net = archs.__dict__[old_config.arch](old_config)  # type: ignore

net_state = torch.load(
    os.path.join(old_config.out_dir, "best_net.pytorch"),
    map_location=lambda storage, loc: storage,
)
net.load_state_dict(net_state)
net.cuda()
net = torch.nn.DataParallel(net)

stats_dict = segmentation_eval(
    old_config,
    net,
Ejemplo n.º 4
0
if not hasattr(old_config, "num_sub_heads"):
    old_config.num_sub_heads = old_config.num_heads

if not hasattr(old_config, "use_doersch_datasets"):
    old_config.use_doersch_datasets = False

with open(os.path.join(old_config.out_dir, "config.pickle"), 'wb') as outfile:
    pickle.dump(old_config, outfile)

with open(os.path.join(old_config.out_dir, "config.txt"), "w") as text_file:
    text_file.write("%s" % old_config)

# Model ------------------------------------------------------

dataloaders_head_A, mapping_assignment_dataloader, mapping_test_dataloader = \
    segmentation_create_dataloaders(old_config)
dataloaders_head_B = dataloaders_head_A  # unlike for clustering datasets

net = archs.__dict__[old_config.arch](old_config)

net_state = torch.load(os.path.join(old_config.out_dir, "best_net.pytorch"),
                       map_location=lambda storage, loc: storage)
net.load_state_dict(net_state)
net.cuda()
net = torch.nn.DataParallel(net)

stats_dict = segmentation_eval(
    old_config,
    net,
    mapping_assignment_dataloader=mapping_assignment_dataloader,
    mapping_test_dataloader=mapping_test_dataloader,