Ejemplo n.º 1
0
def train(
  model,
  image,
  D,
  opt,

  args,
):
  t = trange(args.epochs)
  B = args.batch_size
  ls = args.latent_size
  sz = args.size
  points = torch.stack(torch.meshgrid(
    torch.linspace(-1, 1, steps=args.size, device=device),
    torch.linspace(-1, 1, steps=args.size, device=device),
  ), dim=-1)[None, ...].expand(B, -1, -1, -1)

  for i in t:
    opt.zero_grad()
    # make multiple times and train them at the same time
    time = torch.randn(B,1,1,1,device=device).expand(B,sz,sz,1)
    latent = torch.randn(ls, device=device)[None, None, :]\
      .expand([*points.shape[:-1],-1])
    got = model(points, time, latent)
    style_loss, content_loss = 0, 0
    for g in got.split(1, dim=0):
      sl, cl = D(g.permute(0, 3, 1, 2))
      style_loss = style_loss + sl
      #content_loss = content_loss + cl
    loss = style_loss + content_loss
    t.set_postfix(style=f"{style_loss:.03f}", content=f"{content_loss:.03f}")
    loss.backward()
    opt.step()
    if i % args.valid_freq == 0:
      save_image(f"outputs/fieldgan_{i:05}.png", got[0].clamp(min=0, max=1))
Ejemplo n.º 2
0
def test(model, args):
  with torch.no_grad():
    ls = args.latent_size
    points = torch.stack(torch.meshgrid(
      torch.linspace(-1, 1, steps=args.size, device=device),
      torch.linspace(-1, 1, steps=args.size, device=device),
    ), dim=-1)
    latent1 = torch.randn(ls, device=device)[None, None, :]\
      .expand([*points.shape[:-1],-1])
    latent2 = torch.randn(ls, device=device)[None, None, :]\
      .expand([*points.shape[:-1],-1])
    steps = 100
    for i, t in enumerate(torch.linspace(0, 1, steps=steps, device=device)):
      t = t.expand([*points.shape[:-1], 1])
      alpha = i/steps
      latent = (1-alpha) * latent1 + alpha * latent2
      got = model(points, t, latent)
      save_image(f"outputs/fieldgan_test_{i:03}.png", got)

    latent3 = torch.randn(ls, device=device)[None, None, :]\
      .expand([*points.shape[:-1],-1])
    for i, t in enumerate(reversed(torch.linspace(0, 1, steps=steps, device=device))):
      t = t.expand([*points.shape[:-1], 1])
      alpha = i/steps
      latent = (1-alpha) * latent2 + alpha * latent3
      got = model(points, t, latent)
      i = i + steps
      save_image(f"outputs/fieldgan_test_{i:03}.png", got)
Ejemplo n.º 3
0
def main():
  args = arguments()
  with torch.no_grad():
    model = torch.load(args.refl_model)
    assert(hasattr(model, "refl")), "The provided model must have a refl"
    r = model.refl
    if isinstance(r, refl.LightAndRefl): r = r.refl
    # just check the first choice for now, can add a flag for it later
    if isinstance(r, refl.WeightedChoice): r = r.choices[args.weighted_refl_idx]
    # check again if it's another lit item
    if isinstance(r, refl.LightAndRefl): r = r.refl
    assert(isinstance(r, refl.Rusin)), f"must provide a rusin refl, got {type(r)}"

    degs = torch.stack(torch.meshgrid(
      # theta_h
      torch.linspace(0, 90, 256, device=device, dtype=torch.float),
      # theta_d
      torch.linspace(0, 90, 256, device=device, dtype=torch.float),
      # phi_d
      torch.linspace(0, 360, 256, device=device, dtype=torch.float),
    ), dim=-1)
    rads = torch.deg2rad(degs)
    for i, theta_h in enumerate(rads.split(1, dim=2)):
      latent = torch.randn(*rads.shape[:-2], r.latent_size, device=device)
      theta_h = theta_h.squeeze(2)
      out = r.raw(theta_h, latent)
      save_image(f"outputs/rusin_eval_{i:03}.png", out)
  return
Ejemplo n.º 4
0
def get_output_image(self, content_path, style_path, options: dict):
    start_time = time.time()
    style_content_model = VGG19Model(CONTENT_LAYERS, STYLE_LAYERS)

    content_image, style_image = [
        load_image(path) for path in (content_path, style_path)
    ]

    image = tf.Variable(get_white_noise_image(tf.shape(content_image)[1:])) \
        if options['white_noise_input'] else tf.Variable(content_image)

    style_targets = style_content_model(style_image)['style_outputs']
    content_targets = style_content_model(content_image)['content_outputs']

    opt = tf.keras.optimizers.Adam(learning_rate=options['learning_rate'],
                                   beta_1=0.99,
                                   epsilon=1e-1)

    style_content_model.compile(opt)

    for epoch in range(options['epochs']):
        for step in range(options['steps']):
            style_content_model.fit(
                image,
                content_targets=content_targets,
                style_targets=style_targets,
                content_layer_weights=[1],
                style_layer_weights=options['style_layer_weights'],
                content_weight=options['content_weight'],
                style_weight=options['style_weight'],
                variation_weight=options['variation_weight'])
            self.update_state(state='PROGRESS',
                              meta={
                                  'current':
                                  options['steps'] * epoch + step,
                                  'total':
                                  options['steps'] * options['epochs'],
                                  'elapsed_time':
                                  "{:.1f}s".format(time.time() - start_time)
                              })

    output_path = Path('./static/output') / (str(self.request.id) + '.png')
    save_image(image, Path(output_path))

    return {
        'output_path': str(output_path),
        'total_time': "{:.1f}s".format(time.time() - start_time)
    }
Ejemplo n.º 5
0
def main():
  args = arguments()
  model = SmoothImageApprox(latent_size=args.latent_size).to(device)
  image = load_image(args.image, [args.size, args.size])
  save_image(f"outputs/fieldgan_ref.png", image)
  image = image.permute(2, 0, 1)
  # use same image for content and loss.
  D = StyleTransfer(image[None, ...], image[None, ...]).to(device)
  image = image.to(device)
  init_image = model.init_zero(image.permute(1,2,0))
  save_image(f"outputs/fieldgan_init.png", init_image)
  opt = optim.Adam(model.displacement.parameters(), lr=1e-3, weight_decay=0)
  #opt = optim.Adam(model.parameters(), lr=1e-3, weight_decay=0)
  train(model, image, D, opt, args)
  # TODO render the image after, fixing a latent noise and iterating through time
  test(model, args)
Ejemplo n.º 6
0
def main():
    args = arguments()
    sz = args.size
    with torch.no_grad():
        model = torch.load(args.model)
        exit()
        assert (isinstance(model, RigNeRF)), "Can only project pts of RigNeRF"
        labels, cam, _ = loaders.load(args, training=False, device=device)
        for i in trange(labels.shape[0]):
            c = cam[i:i + 1]
            pt2d = c.project_pts(model.points, sz)
            out = torch.zeros(sz, sz, 3, dtype=torch.float, device=device)
            pixels = pt2d.long()
            pixels = pixels[((0 <= pixels) & (pixels < sz)).all(dim=-1)]
            out[pixels[:, 0], pixels[:, 1]] = 1
            save_image(f"outputs/proj_pts_{i:03}.png", out)
    return
    def calibrateCameraFromImages(self, path):
        print("Calibrating:")
        objpoints = []  # 3d points in real world space
        imgpoints = []  # 2d points in image plane.
        images = glob.glob(path + "/*")

        # setup toolbar
        toolbar_width = len(images)
        sys.stdout.write("[%s]" % (" " * toolbar_width))
        sys.stdout.flush()
        sys.stdout.write("\b" * (toolbar_width + 1))  # return to start of line, after '['
        # Step through the list and search for chessboard corners
        for idx, file_name in enumerate(images):
            img = cv2.imread(file_name)
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # Find the chessboard corners
            ret, corners = cv2.findChessboardCorners(gray, self.chessboardSize, None)

            # If found, add object points, image points
            if ret:
                objpoints.append(self.objp)
                imgpoints.append(corners)  # Draw and display the corners
                cv2.drawChessboardCorners(img, self.chessboardSize, corners, ret)
                # save image
                save_image(img, file_name, path, "corners")
                if self.showImages:
                    cv2.imshow('img', img)
                    cv2.waitKey(500)
            # update the bar
            sys.stdout.write("-")
            sys.stdout.flush()
        sys.stdout.write("]\n")  # this ends the progress bar
        print("Calibration done. Saving calibration results.")
        if self.showImages:
            cv2.destroyAllWindows()
        # Do camera calibration given object points and image points
        img_size = (img.shape[1], img.shape[0])
        ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None)
        # Save the camera calibration result for later use (we won't worry about rvecs / tvecs)
        dist_pickle = {"ret": ret, "mtx": mtx, "dist": dist, "rvecs": rvecs, "tvecs": tvecs}
        calibration_file = os.path.join(self.path + "_results", "calibration_results_pickle.p")
        check_dir(calibration_file)
        pickle.dump(dist_pickle, open(calibration_file, "wb"))
        return ret, mtx, dist, rvecs, tvecs
Ejemplo n.º 8
0
def predict():
    """Predict function."""
    args = get_args("predict")
    G_A = get_generator(args)
    G_B = get_generator(args)
    # Use BatchNorm2d with batchsize=1, affine=False, training=True instead of InstanceNorm2d
    # Use real mean and varance rather than moving_men and moving_varance in BatchNorm2d
    G_A.set_train(True)
    G_B.set_train(True)
    load_ckpt(args, G_A, G_B)

    imgs_out = os.path.join(args.outputs_dir, "predict")
    if not os.path.exists(imgs_out):
        os.makedirs(imgs_out)
    if not os.path.exists(os.path.join(imgs_out, "fake_A")):
        os.makedirs(os.path.join(imgs_out, "fake_A"))
    if not os.path.exists(os.path.join(imgs_out, "fake_B")):
        os.makedirs(os.path.join(imgs_out, "fake_B"))
    args.data_dir = 'testA'
    ds = create_dataset(args)
    reporter = Reporter(args)
    reporter.start_predict("A to B")
    for data in ds.create_dict_iterator(output_numpy=True):
        img_A = Tensor(data["image"])
        path_A = str(data["image_name"][0], encoding="utf-8")
        fake_B = G_A(img_A)
        save_image(fake_B, os.path.join(imgs_out, "fake_B", path_A))
    reporter.info('save fake_B at %s', os.path.join(imgs_out, "fake_B",
                                                    path_A))
    reporter.end_predict()
    args.data_dir = 'testB'
    ds = create_dataset(args)
    reporter.dataset_size = args.dataset_size
    reporter.start_predict("B to A")
    for data in ds.create_dict_iterator(output_numpy=True):
        img_B = Tensor(data["image"])
        path_B = str(data["image_name"][0], encoding="utf-8")
        fake_A = G_B(img_B)
        save_image(fake_A, os.path.join(imgs_out, "fake_A", path_B))
    reporter.info('save fake_A at %s', os.path.join(imgs_out, "fake_A",
                                                    path_B))
    reporter.end_predict()
Ejemplo n.º 9
0
def stylize(args):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # Loads image
    content = load_image(args.content).to(device)

    with torch.no_grad():
        # Load Transformer net
        style_model = TransformerNet()
        state_dict = torch.load(args.model)

        # Load Model Weights
        style_model.load_state_dict(state_dict)
        style_model.eval().to(device)

        # Forward through Image Transformation Network
        out = style_model(content).cpu()

    # Save result image
    save_image(out, args.out)
 def saveSideImages(self, img, perpImage, file_name, data_dir, src, dst,
                    extension):
     f, ax = plt.subplots(1, 2, figsize=(14, 5))
     ax[0].imshow(img, cmap='gray')
     ax[0].set_title('Image with source points drawn')
     ax[1].imshow(perpImage, cmap='gray')
     ax[1].set_title('Warped result with dest. points drawn')
     ax[0].axis('off')
     ax[1].axis('off')
     x = [src[0][0], src[1][0], src[2][0], src[3][0], src[0][0]]
     y = [src[0][1], src[1][1], src[2][1], src[3][1], src[0][1]]
     x_ = [dst[0][0], dst[1][0], dst[2][0], dst[3][0], dst[0][0]]
     y_ = [dst[0][1], dst[1][1], dst[2][1], dst[3][1], dst[0][1]]
     ax[0].plot(x, y, 'b--', lw=2)
     ax[1].plot(x_, y_, 'b--', lw=2)
     f.tight_layout()
     f.savefig("test.jpg")
     save_image(mpimg.imread("test.jpg"), file_name, data_dir,
                "perpSide" + extension)
     os.remove("test.jpg")
Ejemplo n.º 11
0
def test(args):
    """Stylize a content image"""

    device = torch.device("cuda" if args.cuda else "cpu")

    transformer = TransformerNet().to(device)
    if args.model:
        transformer.load_state_dict(torch.load(args.model))

    content_transform = transforms.Compose([
        transforms.Resize(args.content_size),
        transforms.CenterCrop(args.content_size),
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255))
    ])
    content_image = utils.load_image(args.content_image)
    content_image = content_transform(content_image)
    content_image = content_image.unsqueeze(0).to(device)

    output = transformer(content_image).cpu().detach()
    utils.save_image(args.output_image, output[0] * 255)
def image_edit(args):
    image_path = args.data_path
    # args.save_dir = "D:/Pycharm PRoject/open_cv/data/save/images"

    ch = convex_Hull()
    sd = ShapeDetector()
    unified = []

    image = load_image(image_path)
    blurred = filter_image(image)
    mask = hsv_mask(blurred)
    contours = find_contours(mask)
    status = ch.contours_status(contours)
    contour_list = ch.contour_array(status)
    hull = ch.convex_hull(contour_list, contours)

    unified.append(hull)
    unified = np.array(unified, dtype=np.int32)

    shape = sd.detect(hull)
    sd.print_shape_parameters(shape)
    # print("Shape", shape)

    area = contour_avg_area(contours)
    if area >= 15:
        width = 5
    elif area < 15:
        width = 1
    draw_contours(image, unified, width=width)
    if args.save_dir is not None:
        if not os.path.exists(args.save_dir):
            print(
                "The directory: %s doesnot exist,........ making directory: %s"
                % (args.save_dir, args.save_dir))
            os.makedirs(args.save_dir)
        save_image(image,
                   args.save_dir + "/" + args.save_image,
                   unified,
                   width=width)
Ejemplo n.º 13
0
 def undistortChessboardImages(self, data_dir):
     images = glob.glob(data_dir + "/*")
     for idx, file_name in enumerate(images):
         img = mpimg.imread(file_name)
         undistorted_img = self.undistort(data_dir, file_name, img)
         save_image(undistorted_img, file_name, data_dir, "undistorted")
Ejemplo n.º 14
0
def test(model, data_loader, num_train_batches, epoch, test_mloss, test_rloss,
         test_acc, directory):
    """
    Evaluate model on validation set

    Args:
        model: The CapsuleNet model.
        data_loader: An interator over the dataset. It combines a dataset and a sampler.
    """
    print('===> Evaluate mode')

    # Switch to evaluate mode
    model.eval()

    if args.cuda:
        # When we wrap a Module in DataParallel for multi-GPUs
        model = model.module

    loss = 0
    margin_loss = 0
    recon_loss = 0

    correct = 0

    num_batches = len(data_loader)

    global_step = epoch * num_train_batches + num_train_batches

    start_time = timer()

    for data, target in data_loader:
        with torch.no_grad():
            batch_size = data.size(0)
            target_indices = target
            target_one_hot = utils.one_hot_encode(target_indices,
                                                  length=args.num_classes)
            assert target_one_hot.size() == torch.Size([batch_size, 10])

            target = target_one_hot

            if args.cuda:
                data = data.to(args.device)
                target = target.to(args.device)
                target_indices.to(args.device)

            # Output predictions
            output, reconstruction = model(
                data, target_indices,
                False)  # output from DigitCaps (out_digit_caps)

            # Sum up batch loss
            t_loss, m_loss, r_loss = loss_func(output, target,
                                               args.regularization_scale,
                                               reconstruction, data,
                                               args.device, batch_size)
            loss += t_loss.data
            margin_loss += m_loss.data
            recon_loss += r_loss.data

            # Count number of correct predictions
            # v_magnitude shape: [128, 10, 1, 1]
            v_magnitude = torch.sqrt((output**2).sum(dim=2, keepdim=True))
            # pred shape: [128, 1, 1, 1]
            pred = v_magnitude.data.max(1, keepdim=True)[1].cpu()
            correct += pred.eq(target_indices.view_as(pred)).sum()

    # Get the reconstructed images of the last batch
    if args.use_reconstruction_loss:
        reconstruction = model.decoder(output, target_indices, False)
        # Input image size and number of channel.
        # By default, for MNIST, the image width and height is 28x28 and 1 channel for black/white.
        image_width = args.input_width
        image_height = args.input_height
        image_channel = args.num_conv_in_channels
        recon_img = reconstruction.view(-1, image_channel, image_width,
                                        image_height)
        assert recon_img.size() == torch.Size(
            [batch_size, image_channel, image_width, image_height])

        # Save the image into file system
        utils.save_image(
            recon_img, directory /
            ('recons_image_test_{}_{}.png'.format(epoch, global_step)))
        utils.save_image(
            data, directory /
            ('original_image_test_{}_{}.png'.format(epoch, global_step)))

    end_time = timer()

    # Log test losses
    loss /= num_batches
    margin_loss /= num_batches
    recon_loss /= num_batches

    # Log test accuracies
    num_test_data = len(data_loader.dataset)
    accuracy = correct / num_test_data
    accuracy_percentage = float(correct) * 100.0 / float(num_test_data)

    test_mloss.write('%.6f \n' % margin_loss)
    test_rloss.write('%.6f \n' % recon_loss)
    test_acc.write('%.4f \n' % accuracy_percentage)

    # Print test losses and accuracy
    print('Test: [Loss: {:.6f},' \
        '\tMargin loss: {:.6f},' \
        '\tReconstruction loss: {:.6f}]'.format(
            loss,
            margin_loss,
            recon_loss if args.use_reconstruction_loss else 0))
    print('Test Accuracy: {}/{} ({:.2f}%)\n'.format(correct, num_test_data,
                                                    accuracy_percentage))

    global avg_testing_time_per_epoch
    avg_testing_time_per_epoch = (avg_testing_time_per_epoch *
                                  (epoch - 1) + end_time - start_time) / epoch

    global best_acc
    global best_acc_epoch
    if accuracy_percentage > best_acc:
        best_acc = accuracy_percentage
        best_acc_epoch = epoch
        test_loader = data_loader
        utils.dump(utils.make_full_checkpoint_obj(locals(), globals()),
                   directory / 'trained_model/FP32_model')