Ejemplo n.º 1
0
        iter_count += 1

        print('New iteration ', iter_count)

        previous_energy = current_energy

        element_to_add, element_result = EnergyUtils.\
            largest_individual_vqe_energy_reduction_elements(vqe_runner_2, ansatz_element_pool, ansatz=ansatz,
                                                             ansatz_parameters=var_parameters, excited_state=excited_state,
                                                             global_cache=global_cache)
        element_energy_reduction = element_result.fun
        print(element_to_add.element)

        result = vqe_runner.vqe_run(ansatz=ansatz + [element_to_add],
                                    init_guess_parameters=var_parameters +
                                    list(element_result.x),
                                    excited_state=excited_state,
                                    cache=global_cache)

        current_energy = result.fun
        delta_e = previous_energy - current_energy
        var_parameters = list(result.x)

        if delta_e > 0:
            ansatz.append(element_to_add)

            # save iteration data
            try:
                element_qubits = element_to_add.qubits
            except AttributeError:
                element_qubits = []
Ejemplo n.º 2
0
    ansatz = state.ansatz_elements
    var_parameters = state.parameters
    ansatz = ansatz

    # var_parameters = list(df['var_parameters'])[:49]
    var_parameters = var_parameters

    global_cache = GlobalCache(molecule)
    global_cache.calculate_exc_gen_sparse_matrices_dict(ansatz)
    global_cache.calculate_commutators_sparse_matrices_dict(ansatz)

    optimizer = 'BFGS'
    optimizer_options = {'gtol': 1e-8}

    vqe_runner = VQERunner(molecule,
                           backend=QiskitSimBackend,
                           optimizer=optimizer,
                           optimizer_options=None,
                           print_var_parameters=False,
                           use_ansatz_gradient=True)

    energy = vqe_runner.vqe_run(ansatz=ansatz,
                                init_guess_parameters=var_parameters,
                                init_state_qasm=None,
                                cache=global_cache)

    # ansatz_grad = QiskitSimBackend.ansatz_gradient(var_parameters, ansatz, molecule, cache=global_cache)
    print(energy)

    # print(ansatz_grad)
Ejemplo n.º 3
0
    init_ansatz_length = len(ansatz_elements)

    while previous_energy - current_energy >= delta_e_threshold and iter_count <= max_ansatz_elements:
        iter_count += 1

        print('New iteration ', iter_count)

        previous_energy = current_energy

        element_to_add, grad = GradientUtils.\
            get_largest_gradient_elements(ansatz_element_pool, molecule, backend=vqe_runner.backend,
                                          ansatz_parameters=ansatz_parameters, ansatz=ansatz_elements,
                                          global_cache=global_cache)[0]
        print(element_to_add.element)

        result = vqe_runner.vqe_run(ansatz=ansatz_elements + [element_to_add], init_guess_parameters=ansatz_parameters + [0],
                                    cache=global_cache)

        current_energy = result.fun
        delta_e = previous_energy - current_energy

        # get initial guess for the var. params. for the next iteration
        ansatz_parameters = list(result.x)

        if delta_e > 0:

            ansatz_elements.append(element_to_add)

            # save iteration data
            element_qubits = element_to_add.qubits

            gate_count = IterVQEQasmUtils.gate_count_from_ansatz(ansatz_elements, molecule.n_orbitals)
Ejemplo n.º 4
0
                AnsatzElement.spin_complement_orbital(qubit_pair_2[0]),
                AnsatzElement.spin_complement_orbital(qubit_pair_2[1])
            ]

            if set(qubit_pair_1) != set(comp_qubit_pair_1) or set(
                    qubit_pair_2) != set(comp_qubit_pair_2):
                compl_element_to_add = get_spin_compl_exc(
                    element_to_add.qubit_pair_1, element_to_add.qubit_pair_2,
                    ansatz_element_type, molecule.n_orbitals)
                print('Add complement element: ', compl_element_to_add.element)
        else:
            raise Exception('Wrong element order ..')

        if compl_element_to_add is None:
            result = vqe_runner.vqe_run(
                ansatz=ansatz_elements + [element_to_add],
                init_guess_parameters=var_parameters + [0])
        else:
            result = vqe_runner.vqe_run(ansatz=ansatz_elements +
                                        [element_to_add, compl_element_to_add],
                                        init_guess_parameters=var_parameters +
                                        [0, 0])

        current_energy = result.fun
        delta_e = previous_energy - current_energy

        # get initial guess for the var. params. for the next iteration
        var_parameters = list(result.x)

        if delta_e > 0:
            ansatz_elements.append(element_to_add)
Ejemplo n.º 5
0
    LogUtils.log_config()

    # Create a UCCSD ansatz for the specified molecule
    ansatz = UCCSDExcitations(q_system.n_orbitals, q_system.n_electrons, 'f_exc').get_all_elements()

    # choose a backend to calculate expectation values
    backend = MatrixCacheBackend

    # create a cache of precomputed values to accelerate the simulation (optional)
    global_cache = GlobalCache(q_system)
    global_cache.calculate_exc_gen_sparse_matrices_dict(ansatz)
    # global_cache.calculate_commutators_sparse_matrices_dict(ansatz)

    # Create a VQE runner, and specify the minimizer
    optimizer = 'BFGS'
    optimizer_options = {'gtol': 10e-8}
    vqe_runner = VQERunner(q_system, backend=backend, print_var_parameters=False, use_ansatz_gradient=True,
                           optimizer=optimizer, optimizer_options=optimizer_options)

    t0 = time.time()
    result = vqe_runner.vqe_run(ansatz=ansatz, cache=global_cache)  # initial_var_parameters=var_parameters)
    t = time.time()

    logging.critical(result)
    print(result)
    print('Time for running: ', t - t0)

    print('Pizza')


Ejemplo n.º 6
0
    ansatz = ansatz_1()

    init_qasm = None

    global_cache = GlobalCache(e_system, excited_state=0)
    global_cache.calculate_exc_gen_sparse_matrices_dict(ansatz)

    backend = MatrixCacheBackend

    optimizer = 'BFGS'
    optimizer_options = {'gtol': 10e-8, 'maxiter': 10}
    vqe_runner = VQERunner(e_system, backend=backend, print_var_parameters=False, use_ansatz_gradient=True,
                           optimizer=optimizer, optimizer_options=optimizer_options)

    result = vqe_runner.vqe_run(ansatz=ansatz,  cache=global_cache, init_state_qasm=init_qasm)

    parameters = result.x
    statevector = global_cache.get_statevector(ansatz, parameters, init_state_qasm=init_qasm)
    statevector = statevector.todense()

    operator = 'elenaananana'   # TODO: TOVA trqbva da e klas openfermion.FermionicOperator
    operator = openfermion.jordan_wigner(operator)
    operator = openfermion.get_sparse_operator(operator, n_orbitals)

    expectation_value = statevector.dot(operator).dot(statevector.conj().transpose())

    print(expectation_value)

    print('yolo')
Ejemplo n.º 7
0
    rs = [0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3]
    df_count = 0

    for r in rs:
        molecule = H6(r=r)

        vqe_runner = VQERunner(molecule,
                               backend=MatrixCacheBackend,
                               use_ansatz_gradient=True,
                               optimizer=optimizer,
                               optimizer_options=optimizer_options)
        global_cache = GlobalCache(molecule)
        global_cache.calculate_exc_gen_sparse_matrices_dict(ansatz)

        # result = vqe_runner.vqe_run(ansatz, var_parameters, cache=global_cache)
        result = vqe_runner.vqe_run(ansatz, cache=global_cache)

        del global_cache

        fci_E = molecule.fci_energy
        fci_energies.append(fci_E)

        # next var parameters
        if len(ansatz) == 0:
            var_parameters = []
            E = result
            n_iters = 1
        else:
            var_parameters = list(result.x)
            E = result.fun
            n_iters = result.nfev
Ejemplo n.º 8
0
                      time_stamp,
                      ansatz_element_type=ansatz_element_type,
                      frozen_els=frozen_els)

            message = 'Add new element to final ansatz {}. Energy {}. Energy change {}, var. parameters: {}' \
                .format(element_to_add.element, current_energy, delta_e, var_parameters)
            logging.info(message)
            print(message)
        else:
            message = 'No contribution to energy decrease. Stop adding elements to the final ansatz'
            logging.info(message)
            print(message)
            break

        print('Added element ', ansatz_elements[-1].element)

    # save data. Not required?
    save_data(df_data,
              molecule,
              time_stamp,
              ansatz_element_type=ansatz_element_type)

    # calculate the VQE for the final ansatz
    vqe_runner_final = VQERunner(molecule,
                                 backend=QiskitSimBackend,
                                 ansatz=ansatz_elements)
    final_result = vqe_runner_final.vqe_run(ansatz=ansatz_elements)
    t = time.time()

    print(final_result)
    print('Ciao')
Ejemplo n.º 9
0
        molecule = LiH(r=r)
        ground_state = DataUtils.ansatz_from_data_frame(gs_dfs[j], molecule)
        molecule.H_lower_state_terms = [[
            abs(molecule.hf_energy) * 2, ground_state
        ]]

        vqe_runner = VQERunner(molecule,
                               backend=MatrixCacheBackend,
                               use_ansatz_gradient=True,
                               optimizer=optimizer,
                               optimizer_options=optimizer_options)
        global_cache = GlobalCache(molecule, excited_state=excited_state)
        global_cache.calculate_exc_gen_sparse_matrices_dict(ansatz)

        result = vqe_runner.vqe_run(ansatz,
                                    var_parameters,
                                    cache=global_cache,
                                    excited_state=excited_state)

        del global_cache

        exact_E = molecule.calculate_energy_eigenvalues(excited_state +
                                                        1)[excited_state]
        exact_energies.append(exact_E)

        # next var parameters
        if len(ansatz) == 0:
            var_parameters = []
            E = result
            n_iters = 1
        else:
            var_parameters = list(result.x)
Ejemplo n.º 10
0
                df_count += 1
                results_data_frame['var_parameters'] = list(
                    result.x)[:df_count]

                # save data
                DataUtils.save_data(results_data_frame,
                                    molecule,
                                    time_stamp,
                                    ansatz_element_type=ansatz_element_type,
                                    frozen_els=frozen_els,
                                    iter_vqe_type='exc_iqeb')

                message = 'Add new element to final ansatz {}. Energy {}. Energy change {}, var. parameters: {}' \
                    .format(element_to_add.element, current_energy, delta_e, ansatz_parameters)
                logging.info(message)
        else:
            message = 'No contribution to energy decrease. Stop adding elements to the final ansatz'
            logging.info(message)
            break

        print('Added element ', ansatz[-1].element)

    # calculate the VQE for the final ansatz
    final_result = vqe_runner.vqe_run(ansatz=ansatz,
                                      cache=global_cache,
                                      excited_state=excited_state)
    t = time.time()

    print(final_result)
    print('Ciao')