Ejemplo n.º 1
0
def main(
    dataset_name="anguita2013",
    fs_new=33,
    win_len=2.56,
    win_inc=1.0,
    task="har",
    split_type="predefined",
    feat_name="all",
):
    dataset = dataset_importer(dataset_name)
    resampled = transformers.resample(parent=dataset, fs_new=fs_new)
    filtered = transformers.body_grav_filter(parent=resampled)
    windowed = transformers.window(parent=filtered,
                                   win_len=win_len,
                                   win_inc=win_inc)
    accel_feats = features.ecdf(parent=windowed,
                                source_filter=take_all(),
                                source_name=feat_name,
                                n_components=21)
    task = selectors.select_task(parent=accel_feats, task_name=task)
    split = selectors.select_split(parent=task, split_type=split_type)
    clf = models.sgd_classifier(parent=split,
                                split=split,
                                task=task,
                                data=accel_feats)
    clf.evaluate_outputs()
    return clf
Ejemplo n.º 2
0
def dataset_windowed(name, fs_new=33, win_len=2.56, win_inc=1.0):
    dataset = dataset_importer(name)
    resampled = transformers.resample(parent=dataset, fs_new=fs_new)
    filtered = transformers.body_grav_filter(parent=resampled)
    windowed = transformers.window(parent=filtered,
                                   win_len=win_len,
                                   win_inc=win_inc)
    return windowed
Ejemplo n.º 3
0
def main(
        dataset_name,
        source_filter,
        feat_name,
        clf_name,
        fs_new,
        win_len,
        win_inc,
        split_type,
):
    dataset = dataset_importer(dataset_name)
    resampled = transformers.resample(
        parent=dataset,
        fs_new=fs_new
    )
    filtered = transformers.body_grav_filter(
        parent=resampled
    )
    windowed = transformers.window(
        parent=filtered,
        win_len=win_len,
        win_inc=win_inc
    )
    if feat_name == 'ecdf':
        feats = features.ecdf(
            parent=windowed,
            source_filter=source_filter,
            n_components=21
        )
    elif feat_name == 'statistical':
        feats = features.statistical_features(
            parent=windowed,
            source_filter=source_filter,
        )
    else:
        raise ValueError
    task = selectors.select_task(
        parent=feats,
        task_name='har'
    )
    split = selectors.select_split(
        parent=task,
        split_type=split_type
    )
    if clf_name == 'sgd_classifier':
        clf = models.sgd_classifier(
            parent=split,
            data=feats
        )
    elif clf_name == 'logistic_regression_cv':
        clf = models.logistic_regression_cv(
            parent=split,
            data=feats
        )
    else:
        raise ValueError
    return clf.get_results()