Ejemplo n.º 1
0
 def add_beam_optics(self, magnetic_field_container):
     quadrupole_1 = srwlib.SRWLMagFldM(self.quadrupole_1_strength, 2, 's',
                                       self.quadrupole_1_length,
                                       self.quadrupole_1_edge_length, 0)
     magnetic_field_container.add(
         quadrupole_1, self.quadrupole_1_offset_x,
         self.quadrupole_1_offset_y, self.dipole_1_exit_z +
         self.drift_1_length + 0.5 * self.quadrupole_1_length)
     quadrupole_2 = srwlib.SRWLMagFldM(self.quadrupole_2_strength, 2, 'n',
                                       self.quadrupole_2_length,
                                       self.quadrupole_2_edge_length, 0)
     magnetic_field_container.add(
         quadrupole_2, self.quadrupole_2_offset_x,
         self.quadrupole_2_offset_y, self.dipole_1_exit_z +
         self.drift_1_length + self.quadrupole_1_length +
         self.drift_2_length + 0.5 * self.quadrupole_2_length)
Ejemplo n.º 2
0
def main():
    v = srwl_bl.srwl_uti_parse_options(varParam, use_sys_argv=True)
    op = set_optics(v)
    v.ss = True
    v.ss_pl = 'e'
    v.sm = True
    v.sm_pl = 'e'
    v.pw = True
    v.pw_pl = 'xy'
    v.si = True
    v.si_pl = 'xy'
    v.tr = True
    v.tr_pl = 'xz'
    v.ws = True
    v.ws_pl = 'xy'
    mag = None
    if v.rs_type == 'm':
        mag = srwlib.SRWLMagFldC()
        mag.arXc.append(0)
        mag.arYc.append(0)
        mag.arMagFld.append(
            srwlib.SRWLMagFldM(v.mp_field, v.mp_order, v.mp_distribution,
                               v.mp_len))
        mag.arZc.append(v.mp_zc)
    srwl_bl.SRWLBeamline(_name=v.name, _mag_approx=mag).calc_all(v, op)
Ejemplo n.º 3
0
 def setup(self):
     """
     Defines various helpful attributes, builds the fields, and aligns the
     reference trajectory.
     """
     self.dipole_separation = self.get_dipole_separation()
     super(Dogleg, self).setup()
     # define helpful attributes
     self.reference_gamma = self.reference_energy_mev / 0.5109989461
     self.reference_beta = np.sqrt(1 - self.reference_gamma ** -2)
     self.dipole_1_rho = self.reference_gamma * self.reference_beta * 299792458 / (1.758820024e11 * self.dipole_1_strength)
     self.dipole_1_angle = self.dipole_1_arc_length / self.dipole_1_rho
     self.dipole_1_length_z = self.dipole_1_rho * np.sin(self.dipole_1_angle)
     self.dipole_1_entrance_z = self.dipole_1_pad_drift_length * np.cos(self.dipole_1_angle)
     self.dipole_1_exit_z = self.dipole_1_entrance_z + self.dipole_1_length_z
     self.dipole_2_rho = self.reference_gamma * self.reference_beta * 299792458 / (1.758820024e11 * self.dipole_2_strength)
     self.dipole_2_angle = self.dipole_2_arc_length / self.dipole_2_rho
     self.dipole_2_length_z = self.dipole_2_rho * np.sin(self.dipole_2_angle)
     self.dipole_2_entrance_z = self.dipole_1_exit_z + self.dipole_separation
     self.dipole_2_exit_z = self.dipole_2_entrance_z + self.dipole_1_length_z
     self.detector_z = self.dipole_2_entrance_z + self.detector_distance
     self.z_at_end = self.dipole_2_exit_z + self.dipole_2_pad_drift_length * np.cos(self.dipole_2_angle)
     # build fields
     self.__magnetic_field_regular = srwlib.SRWLMagFldC()
     self.__magnetic_field_no_dipole_1 = srwlib.SRWLMagFldC()
     self.__magnetic_field_no_dipole_2 = srwlib.SRWLMagFldC()
     self.__magnetic_field_only_dipole_1 = srwlib.SRWLMagFldC()
     self.__magnetic_field_regular.allocate(0)
     self.__magnetic_field_no_dipole_1.allocate(0)
     self.__magnetic_field_no_dipole_2.allocate(0)
     self.__magnetic_field_only_dipole_1.allocate(0)
     # dipole 1
     dipole_1 = srwlib.SRWLMagFldM(self.dipole_1_polarity * self.dipole_1_strength, 1, 'n', self.dipole_1_length_z, self.dipole_1_edge_length, 0)
     self.__magnetic_field_regular.add(dipole_1, 0, 0, self.dipole_1_entrance_z + 0.5 * self.dipole_1_length_z)
     self.__magnetic_field_no_dipole_2.add(dipole_1, 0, 0, self.dipole_1_entrance_z + 0.5 * self.dipole_1_length_z)
     self.__magnetic_field_only_dipole_1.add(dipole_1, 0, 0, self.dipole_1_entrance_z + 0.5 * self.dipole_1_length_z)
     # beam optics between dipoles
     self.add_beam_optics(self.__magnetic_field_regular)
     self.add_beam_optics(self.__magnetic_field_no_dipole_1)
     self.add_beam_optics(self.__magnetic_field_no_dipole_2)
     # dipole 2
     dipole_2 = srwlib.SRWLMagFldM(self.dipole_2_polarity * self.dipole_2_strength, 1, 'n', self.dipole_2_length_z, self.dipole_2_edge_length, 0)
     self.__magnetic_field_regular.add(dipole_2, 0, 0, self.dipole_2_entrance_z + 0.5 * self.dipole_2_length_z)
     self.__magnetic_field_no_dipole_1.add(dipole_2, 0, 0, self.dipole_2_entrance_z + 0.5 * self.dipole_2_length_z)
     # align reference trajectory
     self.align_reference_trajectory()
Ejemplo n.º 4
0
def main():
    v = srwl_bl.srwl_uti_parse_options(varParam, use_sys_argv=True)
    setup_magnetic_measurement_files(v, "configurations/magn_meas_u20_hxn.zip")
    op = set_optics(v)
    v.ws = True
    v.ws_pl = 'xy'
    mag = None
    if v.rs_type == 'm':
        mag = srwlib.SRWLMagFldC()
        mag.arXc.append(0)
        mag.arYc.append(0)
        mag.arMagFld.append(srwlib.SRWLMagFldM(v.mp_field, v.mp_order, v.mp_distribution, v.mp_len))
        mag.arZc.append(v.mp_zc)
    srwl_bl.SRWLBeamline(_name=v.name, _mag_approx=mag).calc_all(v, op)
Ejemplo n.º 5
0
def run_experiment(other_params, propagation_params, set_up_funcs, plot=False):
    """
    names - [list] the name list of instruments.
    setting_params - [list] the meta information of the experiment.
    physics_params - [list] .
    propagation_params - [list] .
    """
    varParam = srwl_bl.srwl_uti_ext_options(other_params + propagation_params)
    v = srwl_bl.srwl_uti_parse_options(varParam, use_sys_argv=True)
    op = None
    for n, func in enumerate(set_up_funcs):
        value = func(v)
        if func.__name__ == 'set_optics':
            op = value
    if op is None:
        raise ValueError(
            "set_optics() function should be included in set_up_funcs")
    # this part is different for different beamline?
    v.ws = True
    if plot:
        v.ws_pl = 'xy'
    mag = None
    if v.rs_type == 'm':
        mag = srwlib.SRWLMagFldC()
        mag.arXc.append(0)
        mag.arYc.append(0)
        mag.arMagFld.append(
            srwlib.SRWLMagFldM(v.mp_field, v.mp_order, v.mp_distribution,
                               v.mp_len))
        mag.arZc.append(v.mp_zc)
    srwl_bl.SRWLBeamline(_name=v.name, _mag_approx=mag).calc_all(v, op)
    # remove saved image.
    if plot:
        plt.show()
    else:
        for file in glob.glob('*.png'):
            os.remove(file)
        plt.close('all')
    return
Ejemplo n.º 6
0
def track_drift(trajectory):
    dummy_field = srwlib.SRWLMagFldM(0, 1, 'n', 0.1, 0, 0)
    container = srwlib.SRWLMagFldC()
    container.add(dummy_field, 0, 0, 0.05)
    return srwlib.srwl.CalcPartTraj(trajectory, container, [1])
Ejemplo n.º 7
0
def run_srw_simulation(task_cut, hOffsetIdx, vOffsetIdx, hOffsetIdx2,
                       vOffsetIdx2, file_idx, nvx_idx, nvy_idx, nvz_idx,
                       nvx2_idx, nvy2_idx, nvz2_idx, wp_idx, process_number):
    """ Runs the number of SRW simulations as determined by the number of rows in task_cut. task_cut holds the parameters that will be updated to varParam to introduce offsets
        task_cut: 
             i: task number 
             offset_notation: binary values for which offsets/rotations are applied:  offsets_mirror1, offsets_mirror2, rotations_mirror1, rotations_mirror2
             dx1: the horizontal offset to mirror 1
             dy1: the vertical offset to mirror 1
             dx2: the horizontal offset to mirror 2 
             dy2: the vertical offset to mirror 2 
             thetax1: thetax for rotation matrix to be applied to mirror 1 
             thetay1: thetay for rotation matrix to be applied to mirror 1 
             thetaz1: thetaz for rotation matrix to be applied to mirror 1
             thetax2: thetax for rotation matrix to be applied to mirror 2
             thetay2: thetay for rotation matrix to be applied to mirror 2 
             thetaz2: thetaz for rotation matrix to be applied to mirror 2 
             wp: watchpoint location for final screen 
        hOffsetIdx: index of where to update horizontal offset in varParams for mirror 1 
        vOffsetIdx: index of where to update vertical offset in varParams for mirror 1 
        hOffsetIdx2: index of where to update horizontal offset in varParams for mirror 2
        vOffsetIdx2: index of where to update vertical offset in varParams for mirror 
        file_idx: the index of the output beam file 
        nvx_idx: index of where to update thetax in varParams for mirror 1 
        nvy_idx: index of where to update thetay in varParams for mirror 1 
        nvz_idx: index of where to update thetaz in varParams for mirror 1 
        nvx2_idx: index of where to update thetax in varParams for mirror 2
        nvy2_idx: index of where to update thetay in varParams for mirror 2 
        nvz2_idx: index of where to update thetaz in varParams for mirror 2 
        wp_idx: index of where to update the final screen 
        process_number: the process number running this task cut
    """
    print('Process ' + str(process_number) + ' to complete ' +
          str(len(task_cut)) + ' tasks')
    for t in range(len(task_cut)):

        varParam = get_reset_varParam()

        #print(len(task_cut))
        #print(task_cut)

        #### get task parameters based on which combo
        i, offset_notation, dx1, dy1, dx2, dy2, thetax1, thetay1, thetaz1, thetax2, thetay2, thetaz2, wp = task_cut[
            t]

        offsets_mirror1, offsets_mirror2, rotations_mirror1, rotations_mirror2, watchpoint_pos = offset_notation

        task_params = []
        #### update params
        if offsets_mirror1:
            varParam[hOffsetIdx][2] = dx1
            task_params.append(dx1.reshape(1, 1))
            varParam[vOffsetIdx][2] = dy1

        if offsets_mirror2:
            varParam[hOffsetIdx2][2] = dx2
            varParam[vOffsetIdx2][2] = dy2
            task_params.append(dy2.reshape(1, 1))

        if rotations_mirror1:
            vx = varParam[nvx_idx][2]
            vy = varParam[nvy_idx][2]
            vz = varParam[nvz_idx][2]

            Rx = np.array([[1, 0, 0], [0, np.cos(thetax1), -np.sin(thetax1)],
                           [0, np.sin(thetax1),
                            np.cos(thetax1)]])
            Ry = np.array([[np.cos(thetay1), 0,
                            np.sin(thetay1)], [0, 1, 0],
                           [-np.sin(thetay1), 0,
                            np.cos(thetay1)]])
            Rz = np.array([[np.cos(thetaz1), -np.sin(thetaz1), 0],
                           [np.sin(thetaz1),
                            np.cos(thetaz1), 0], [0, 0, 1]])

            Rxy = np.dot(Rx, Ry)
            R_tot = np.dot(Rxy, Rz)
            v = np.array([vx, vy, vz]).reshape(3, 1)

            rtot_v = np.dot(R_tot, v)

            varParam[nvx_idx][2] = rtot_v[0]

            varParam[nvy_idx][2] = rtot_v[1]

            varParam[nvz_idx][2] = rtot_v[2]

            #task_params.append(thetax1.reshape(1,1))
            task_params.append(thetay1.reshape(1, 1))
            task_params.append(thetaz1.reshape(1, 1))

        if rotations_mirror2:
            vx2 = varParam[nvx2_idx][2]
            vy2 = varParam[nvy2_idx][2]
            vz2 = varParam[nvz2_idx][2]

            Rx2 = np.array([[1, 0, 0], [0,
                                        np.cos(thetax2), -np.sin(thetax2)],
                            [0, np.sin(thetax2),
                             np.cos(thetax2)]])
            Ry2 = np.array([[np.cos(thetay2), 0,
                             np.sin(thetay2)], [0, 1, 0],
                            [-np.sin(thetay2), 0,
                             np.cos(thetay2)]])
            Rz2 = np.array([[np.cos(thetaz2), -np.sin(thetaz2), 0],
                            [np.sin(thetaz2),
                             np.cos(thetaz2), 0], [0, 0, 1]])

            Rxy2 = np.dot(Rx2, Ry2)
            R_tot2 = np.dot(Rxy2, Rz2)
            v2 = np.array([vx2, vy2, vz2]).reshape(3, 1)

            rtot_v2 = np.dot(R_tot2, v2)

            varParam[nvx2_idx][2] = rtot_v2[0]

            varParam[nvy2_idx][2] = rtot_v2[1]

            varParam[nvz2_idx][2] = rtot_v2[2]

            task_params.append(thetax2.reshape(1, 1))
            #task_params.append(thetay2.reshape(1,1))
            task_params.append(thetaz2.reshape(1, 1))

        if watchpoint_pos:
            print('updating with ' + str(wp))
            varParam[wp_idx][2] = wp
            task_params.append(wp.reshape(1, 1))

        save_dat = 'dat_files/res_int_se_' + str(i) + '.dat'
        varParam[file_idx][2] = save_dat

        v = srwl_bl.srwl_uti_parse_options(varParam, use_sys_argv=True)
        op = set_optics(v)
        v.si = True
        v.si_pl = ''
        v.ws = True
        v.ws_pl = ''
        mag = None
        if v.rs_type == 'm':
            mag = srwlib.SRWLMagFldC()
            mag.arXc.append(0)
            mag.arYc.append(0)
            mag.arMagFld.append(
                srwlib.SRWLMagFldM(v.mp_field, v.mp_order, v.mp_distribution,
                                   v.mp_len))
            mag.arZc.append(v.mp_zc)
        srwl_bl.SRWLBeamline(_name=v.name, _mag_approx=mag).calc_all(v, op)
        beam = read_srw_file(save_dat)
        h = beam.shape[0]
        w = beam.shape[1]
        beam = beam.reshape(1, h, w)
        task_params = np.concatenate(task_params, axis=1)

        np.save('beams/beam_' + str(int(i)) + '.npy', beam)
        np.save('parameters/offsets_' + str(int(i)) + '.npy', task_params)
        #time.sleep(0.5)
        print('Process ' + str(process_number) + ' finished task ' +
              str(int(i)))