def experiment(exp, arch, loss, double_softmax, confidence_thresh, rampup,
               teacher_alpha, fix_ema, unsup_weight, cls_bal_scale,
               cls_bal_scale_range, cls_balance, cls_balance_loss,
               combine_batches, learning_rate, standardise_samples,
               src_affine_std, src_xlat_range, src_hflip, src_intens_flip,
               src_intens_scale_range, src_intens_offset_range,
               src_gaussian_noise_std, tgt_affine_std, tgt_xlat_range,
               tgt_hflip, tgt_intens_flip, tgt_intens_scale_range,
               tgt_intens_offset_range, tgt_gaussian_noise_std, num_epochs,
               batch_size, epoch_size, seed, log_file, model_file, device):
    settings = locals().copy()

    import os
    import sys
    import pickle
    import cmdline_helpers

    if log_file == '':
        log_file = 'output_aug_log_{}.txt'.format(exp)
    elif log_file == 'none':
        log_file = None

    if log_file is not None:
        if os.path.exists(log_file):
            print('Output log file {} already exists'.format(log_file))
            return

    use_rampup = rampup > 0

    src_intens_scale_range_lower, src_intens_scale_range_upper, src_intens_offset_range_lower, src_intens_offset_range_upper = \
        cmdline_helpers.intens_aug_options(src_intens_scale_range, src_intens_offset_range)
    tgt_intens_scale_range_lower, tgt_intens_scale_range_upper, tgt_intens_offset_range_lower, tgt_intens_offset_range_upper = \
        cmdline_helpers.intens_aug_options(tgt_intens_scale_range, tgt_intens_offset_range)

    import time
    import math
    import numpy as np
    from batchup import data_source, work_pool
    import data_loaders
    import standardisation
    import network_architectures
    import augmentation
    import torch, torch.cuda
    from torch import nn
    from torch.nn import functional as F
    import optim_weight_ema

    torch_device = torch.device(device)
    pool = work_pool.WorkerThreadPool(2)

    n_chn = 0

    if exp == 'svhn_mnist':
        d_source = data_loaders.load_svhn(zero_centre=False, greyscale=True)
        d_target = data_loaders.load_mnist(invert=False,
                                           zero_centre=False,
                                           pad32=True,
                                           val=False)
    elif exp == 'mnist_svhn':
        d_source = data_loaders.load_mnist(invert=False,
                                           zero_centre=False,
                                           pad32=True)
        d_target = data_loaders.load_svhn(zero_centre=False,
                                          greyscale=True,
                                          val=False)
    elif exp == 'svhn_mnist_rgb':
        d_source = data_loaders.load_svhn(zero_centre=False, greyscale=False)
        d_target = data_loaders.load_mnist(invert=False,
                                           zero_centre=False,
                                           pad32=True,
                                           val=False,
                                           rgb=True)
    elif exp == 'mnist_svhn_rgb':
        d_source = data_loaders.load_mnist(invert=False,
                                           zero_centre=False,
                                           pad32=True,
                                           rgb=True)
        d_target = data_loaders.load_svhn(zero_centre=False,
                                          greyscale=False,
                                          val=False)
    elif exp == 'cifar_stl':
        d_source = data_loaders.load_cifar10(range_01=False)
        d_target = data_loaders.load_stl(zero_centre=False, val=False)
    elif exp == 'stl_cifar':
        d_source = data_loaders.load_stl(zero_centre=False)
        d_target = data_loaders.load_cifar10(range_01=False, val=False)
    elif exp == 'mnist_usps':
        d_source = data_loaders.load_mnist(zero_centre=False)
        d_target = data_loaders.load_usps(zero_centre=False,
                                          scale28=True,
                                          val=False)
    elif exp == 'usps_mnist':
        d_source = data_loaders.load_usps(zero_centre=False, scale28=True)
        d_target = data_loaders.load_mnist(zero_centre=False, val=False)
    elif exp == 'syndigits_svhn':
        d_source = data_loaders.load_syn_digits(zero_centre=False)
        d_target = data_loaders.load_svhn(zero_centre=False, val=False)
    elif exp == 'synsigns_gtsrb':
        d_source = data_loaders.load_syn_signs(zero_centre=False)
        d_target = data_loaders.load_gtsrb(zero_centre=False, val=False)
    else:
        print('Unknown experiment type \'{}\''.format(exp))
        return

    # Delete the training ground truths as we should not be using them
    del d_target.train_y

    if standardise_samples:
        standardisation.standardise_dataset(d_source)
        standardisation.standardise_dataset(d_target)

    n_classes = d_source.n_classes

    print('Loaded data')

    if arch == '':
        if exp in {'mnist_usps', 'usps_mnist'}:
            arch = 'mnist-bn-32-64-256'
        if exp in {'svhn_mnist', 'mnist_svhn'}:
            arch = 'grey-32-64-128-gp'
        if exp in {
                'cifar_stl', 'stl_cifar', 'syndigits_svhn', 'svhn_mnist_rgb',
                'mnist_svhn_rgb'
        }:
            arch = 'rgb-128-256-down-gp'
        if exp in {'synsigns_gtsrb'}:
            arch = 'rgb40-96-192-384-gp'

    net_class, expected_shape = network_architectures.get_net_and_shape_for_architecture(
        arch)

    if expected_shape != d_source.train_X.shape[1:]:
        print(
            'Architecture {} not compatible with experiment {}; it needs samples of shape {}, '
            'data has samples of shape {}'.format(arch, exp, expected_shape,
                                                  d_source.train_X.shape[1:]))
        return

    student_net = net_class(n_classes).to(torch_device)
    teacher_net = net_class(n_classes).to(torch_device)
    student_params = list(student_net.parameters())
    teacher_params = list(teacher_net.parameters())
    for param in teacher_params:
        param.requires_grad = False

    student_optimizer = torch.optim.Adam(student_params, lr=learning_rate)
    if fix_ema:
        teacher_optimizer = optim_weight_ema.EMAWeightOptimizer(
            teacher_net, student_net, alpha=teacher_alpha)
    else:
        teacher_optimizer = optim_weight_ema.OldWeightEMA(teacher_net,
                                                          student_net,
                                                          alpha=teacher_alpha)
    classification_criterion = nn.CrossEntropyLoss()

    print('Built network')

    src_aug = augmentation.ImageAugmentation(
        src_hflip,
        src_xlat_range,
        src_affine_std,
        intens_flip=src_intens_flip,
        intens_scale_range_lower=src_intens_scale_range_lower,
        intens_scale_range_upper=src_intens_scale_range_upper,
        intens_offset_range_lower=src_intens_offset_range_lower,
        intens_offset_range_upper=src_intens_offset_range_upper,
        gaussian_noise_std=src_gaussian_noise_std)
    tgt_aug = augmentation.ImageAugmentation(
        tgt_hflip,
        tgt_xlat_range,
        tgt_affine_std,
        intens_flip=tgt_intens_flip,
        intens_scale_range_lower=tgt_intens_scale_range_lower,
        intens_scale_range_upper=tgt_intens_scale_range_upper,
        intens_offset_range_lower=tgt_intens_offset_range_lower,
        intens_offset_range_upper=tgt_intens_offset_range_upper,
        gaussian_noise_std=tgt_gaussian_noise_std)

    if combine_batches:

        def augment(X_sup, y_src, X_tgt):
            X_src_stu, X_src_tea = src_aug.augment_pair(X_sup)
            X_tgt_stu, X_tgt_tea = tgt_aug.augment_pair(X_tgt)
            return X_src_stu, X_src_tea, y_src, X_tgt_stu, X_tgt_tea
    else:

        def augment(X_src, y_src, X_tgt):
            X_src = src_aug.augment(X_src)
            X_tgt_stu, X_tgt_tea = tgt_aug.augment_pair(X_tgt)
            return X_src, y_src, X_tgt_stu, X_tgt_tea

    rampup_weight_in_list = [0]

    cls_bal_fn = network_architectures.get_cls_bal_function(cls_balance_loss)

    def compute_aug_loss(stu_out, tea_out):
        # Augmentation loss
        if use_rampup:
            unsup_mask = None
            conf_mask_count = None
            unsup_mask_count = None
        else:
            conf_tea = torch.max(tea_out, 1)[0]
            unsup_mask = conf_mask = (conf_tea > confidence_thresh).float()
            unsup_mask_count = conf_mask_count = conf_mask.sum()

        if loss == 'bce':
            aug_loss = network_architectures.robust_binary_crossentropy(
                stu_out, tea_out)
        else:
            d_aug_loss = stu_out - tea_out
            aug_loss = d_aug_loss * d_aug_loss

        # Class balance scaling
        if cls_bal_scale:
            if use_rampup:
                n_samples = float(aug_loss.shape[0])
            else:
                n_samples = unsup_mask.sum()
            avg_pred = n_samples / float(n_classes)
            bal_scale = avg_pred / torch.clamp(tea_out.sum(dim=0), min=1.0)
            if cls_bal_scale_range != 0.0:
                bal_scale = torch.clamp(bal_scale,
                                        min=1.0 / cls_bal_scale_range,
                                        max=cls_bal_scale_range)
            bal_scale = bal_scale.detach()
            aug_loss = aug_loss * bal_scale[None, :]

        aug_loss = aug_loss.mean(dim=1)

        if use_rampup:
            unsup_loss = aug_loss.mean() * rampup_weight_in_list[0]
        else:
            unsup_loss = (aug_loss * unsup_mask).mean()

        # Class balance loss
        if cls_balance > 0.0:
            # Compute per-sample average predicated probability
            # Average over samples to get average class prediction
            avg_cls_prob = stu_out.mean(dim=0)
            # Compute loss
            equalise_cls_loss = cls_bal_fn(avg_cls_prob,
                                           float(1.0 / n_classes))

            equalise_cls_loss = equalise_cls_loss.mean() * n_classes

            if use_rampup:
                equalise_cls_loss = equalise_cls_loss * rampup_weight_in_list[0]
            else:
                if rampup == 0:
                    equalise_cls_loss = equalise_cls_loss * unsup_mask.mean(
                        dim=0)

            unsup_loss += equalise_cls_loss * cls_balance

        return unsup_loss, conf_mask_count, unsup_mask_count

    if combine_batches:

        def f_train(X_src0, X_src1, y_src, X_tgt0, X_tgt1):
            X_src0 = torch.tensor(X_src0,
                                  dtype=torch.float,
                                  device=torch_device)
            X_src1 = torch.tensor(X_src1,
                                  dtype=torch.float,
                                  device=torch_device)
            y_src = torch.tensor(y_src, dtype=torch.long, device=torch_device)
            X_tgt0 = torch.tensor(X_tgt0,
                                  dtype=torch.float,
                                  device=torch_device)
            X_tgt1 = torch.tensor(X_tgt1,
                                  dtype=torch.float,
                                  device=torch_device)

            n_samples = X_src0.size()[0]
            n_total = n_samples + X_tgt0.size()[0]

            student_optimizer.zero_grad()
            student_net.train()
            teacher_net.train()

            # Concatenate source and target mini-batches
            X0 = torch.cat([X_src0, X_tgt0], 0)
            X1 = torch.cat([X_src1, X_tgt1], 0)

            student_logits_out = student_net(X0)
            student_prob_out = F.softmax(student_logits_out, dim=1)

            src_logits_out = student_logits_out[:n_samples]
            src_prob_out = student_prob_out[:n_samples]

            teacher_logits_out = teacher_net(X1)
            teacher_prob_out = F.softmax(teacher_logits_out, dim=1)

            # Supervised classification loss
            if double_softmax:
                clf_loss = classification_criterion(src_prob_out, y_src)
            else:
                clf_loss = classification_criterion(src_logits_out, y_src)

            unsup_loss, conf_mask_count, unsup_mask_count = compute_aug_loss(
                student_prob_out, teacher_prob_out)

            loss_expr = clf_loss + unsup_loss * unsup_weight

            loss_expr.backward()
            student_optimizer.step()
            teacher_optimizer.step()

            outputs = [
                float(clf_loss) * n_samples,
                float(unsup_loss) * n_total
            ]
            if not use_rampup:
                mask_count = float(conf_mask_count) * 0.5
                unsup_count = float(unsup_mask_count) * 0.5

                outputs.append(mask_count)
                outputs.append(unsup_count)
            return tuple(outputs)
    else:

        def f_train(X_src, y_src, X_tgt0, X_tgt1):
            X_src = torch.tensor(X_src, dtype=torch.float, device=torch_device)
            y_src = torch.tensor(y_src, dtype=torch.long, device=torch_device)
            X_tgt0 = torch.tensor(X_tgt0,
                                  dtype=torch.float,
                                  device=torch_device)
            X_tgt1 = torch.tensor(X_tgt1,
                                  dtype=torch.float,
                                  device=torch_device)

            student_optimizer.zero_grad()
            student_net.train()
            teacher_net.train()

            src_logits_out = student_net(X_src)
            student_tgt_logits_out = student_net(X_tgt0)
            student_tgt_prob_out = F.softmax(student_tgt_logits_out, dim=1)
            teacher_tgt_logits_out = teacher_net(X_tgt1)
            teacher_tgt_prob_out = F.softmax(teacher_tgt_logits_out, dim=1)

            # Supervised classification loss
            if double_softmax:
                clf_loss = classification_criterion(
                    F.softmax(src_logits_out, dim=1), y_src)
            else:
                clf_loss = classification_criterion(src_logits_out, y_src)

            unsup_loss, conf_mask_count, unsup_mask_count = compute_aug_loss(
                student_tgt_prob_out, teacher_tgt_prob_out)

            loss_expr = clf_loss + unsup_loss * unsup_weight

            loss_expr.backward()
            student_optimizer.step()
            teacher_optimizer.step()

            n_samples = X_src.size()[0]

            outputs = [
                float(clf_loss) * n_samples,
                float(unsup_loss) * n_samples
            ]
            if not use_rampup:
                mask_count = float(conf_mask_count)
                unsup_count = float(unsup_mask_count)

                outputs.append(mask_count)
                outputs.append(unsup_count)
            return tuple(outputs)

    print('Compiled training function')

    def f_pred_src(X_sup):
        X_var = torch.tensor(X_sup, dtype=torch.float, device=torch_device)
        student_net.eval()
        teacher_net.eval()
        return (F.softmax(student_net(X_var), dim=1).detach().cpu().numpy(),
                F.softmax(teacher_net(X_var), dim=1).detach().cpu().numpy())

    def f_pred_tgt(X_sup):
        X_var = torch.tensor(X_sup, dtype=torch.float, device=torch_device)
        student_net.eval()
        teacher_net.eval()
        return (F.softmax(student_net(X_var), dim=1).detach().cpu().numpy(),
                F.softmax(teacher_net(X_var), dim=1).detach().cpu().numpy())

    def f_eval_src(X_sup, y_sup):
        y_pred_prob_stu, y_pred_prob_tea = f_pred_src(X_sup)
        y_pred_stu = np.argmax(y_pred_prob_stu, axis=1)
        y_pred_tea = np.argmax(y_pred_prob_tea, axis=1)
        return (float(
            (y_pred_stu != y_sup).sum()), float((y_pred_tea != y_sup).sum()))

    def f_eval_tgt(X_sup, y_sup):
        y_pred_prob_stu, y_pred_prob_tea = f_pred_tgt(X_sup)
        y_pred_stu = np.argmax(y_pred_prob_stu, axis=1)
        y_pred_tea = np.argmax(y_pred_prob_tea, axis=1)
        return (float(
            (y_pred_stu != y_sup).sum()), float((y_pred_tea != y_sup).sum()))

    print('Compiled evaluation function')

    # Setup output
    def log(text):
        print(text)
        if log_file is not None:
            with open(log_file, 'a') as f:
                f.write(text + '\n')
                f.flush()
                f.close()

    cmdline_helpers.ensure_containing_dir_exists(log_file)

    # Report setttings
    log('Settings: {}'.format(', '.join([
        '{}={}'.format(key, settings[key])
        for key in sorted(list(settings.keys()))
    ])))

    # Report dataset size
    log('Dataset:')
    log('SOURCE Train: X.shape={}, y.shape={}'.format(d_source.train_X.shape,
                                                      d_source.train_y.shape))
    log('SOURCE Test: X.shape={}, y.shape={}'.format(d_source.test_X.shape,
                                                     d_source.test_y.shape))
    log('TARGET Train: X.shape={}'.format(d_target.train_X.shape))
    log('TARGET Test: X.shape={}, y.shape={}'.format(d_target.test_X.shape,
                                                     d_target.test_y.shape))

    print('Training...')
    sup_ds = data_source.ArrayDataSource([d_source.train_X, d_source.train_y],
                                         repeats=-1)
    tgt_train_ds = data_source.ArrayDataSource([d_target.train_X], repeats=-1)
    train_ds = data_source.CompositeDataSource([sup_ds,
                                                tgt_train_ds]).map(augment)
    train_ds = pool.parallel_data_source(train_ds)
    if epoch_size == 'large':
        n_samples = max(d_source.train_X.shape[0], d_target.train_X.shape[0])
    elif epoch_size == 'small':
        n_samples = min(d_source.train_X.shape[0], d_target.train_X.shape[0])
    elif epoch_size == 'target':
        n_samples = d_target.train_X.shape[0]
    n_train_batches = n_samples // batch_size

    source_test_ds = data_source.ArrayDataSource(
        [d_source.test_X, d_source.test_y])
    target_test_ds = data_source.ArrayDataSource(
        [d_target.test_X, d_target.test_y])

    if seed != 0:
        shuffle_rng = np.random.RandomState(seed)
    else:
        shuffle_rng = np.random

    train_batch_iter = train_ds.batch_iterator(batch_size=batch_size,
                                               shuffle=shuffle_rng)

    best_teacher_model_state = {
        k: v.cpu().numpy()
        for k, v in teacher_net.state_dict().items()
    }

    best_conf_mask_rate = 0.0
    best_src_test_err = 1.0
    for epoch in range(num_epochs):
        t1 = time.time()

        if use_rampup:
            if epoch < rampup:
                p = max(0.0, float(epoch)) / float(rampup)
                p = 1.0 - p
                rampup_value = math.exp(-p * p * 5.0)
            else:
                rampup_value = 1.0

            rampup_weight_in_list[0] = rampup_value

        train_res = data_source.batch_map_mean(f_train,
                                               train_batch_iter,
                                               n_batches=n_train_batches)

        train_clf_loss = train_res[0]
        if combine_batches:
            unsup_loss_string = 'unsup (both) loss={:.6f}'.format(train_res[1])
        else:
            unsup_loss_string = 'unsup (tgt) loss={:.6f}'.format(train_res[1])

        src_test_err_stu, src_test_err_tea = source_test_ds.batch_map_mean(
            f_eval_src, batch_size=batch_size * 2)
        tgt_test_err_stu, tgt_test_err_tea = target_test_ds.batch_map_mean(
            f_eval_tgt, batch_size=batch_size * 2)

        if use_rampup:
            unsup_loss_string = '{}, rampup={:.3%}'.format(
                unsup_loss_string, rampup_value)
            if src_test_err_stu < best_src_test_err:
                best_src_test_err = src_test_err_stu
                best_teacher_model_state = {
                    k: v.cpu().numpy()
                    for k, v in teacher_net.state_dict().items()
                }
                improve = '*** '
            else:
                improve = ''
        else:
            conf_mask_rate = train_res[-2]
            unsup_mask_rate = train_res[-1]
            if conf_mask_rate > best_conf_mask_rate:
                best_conf_mask_rate = conf_mask_rate
                improve = '*** '
                best_teacher_model_state = {
                    k: v.cpu().numpy()
                    for k, v in teacher_net.state_dict().items()
                }
            else:
                improve = ''
            unsup_loss_string = '{}, conf mask={:.3%}, unsup mask={:.3%}'.format(
                unsup_loss_string, conf_mask_rate, unsup_mask_rate)

        t2 = time.time()

        log('{}Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}, {}; '
            'SRC TEST ERR={:.3%}, TGT TEST student err={:.3%}, TGT TEST teacher err={:.3%}'
            .format(improve, epoch, t2 - t1, train_clf_loss, unsup_loss_string,
                    src_test_err_stu, tgt_test_err_stu, tgt_test_err_tea))

    # Save network
    if model_file != '':
        cmdline_helpers.ensure_containing_dir_exists(model_file)
        with open(model_file, 'wb') as f:
            torch.save(best_teacher_model_state, f)
Ejemplo n.º 2
0
def experiment(exp, arch, learning_rate, standardise_samples, affine_std,
               xlat_range, hflip, intens_flip, intens_scale_range,
               intens_offset_range, gaussian_noise_std, num_epochs, batch_size,
               seed, log_file, device):
    import os
    import sys
    import cmdline_helpers

    if log_file == '':
        log_file = 'output_aug_log_{}.txt'.format(exp)
    elif log_file == 'none':
        log_file = None

    if log_file is not None:
        if os.path.exists(log_file):
            print('Output log file {} already exists'.format(log_file))
            return

    intens_scale_range_lower, intens_scale_range_upper, intens_offset_range_lower, intens_offset_range_upper = \
        cmdline_helpers.intens_aug_options(intens_scale_range, intens_offset_range)

    import time
    import math
    import numpy as np
    from batchup import data_source, work_pool
    import data_loaders
    import standardisation
    import network_architectures
    import augmentation
    import torch, torch.cuda
    from torch import nn
    from torch.nn import functional as F

    with torch.cuda.device(device):
        pool = work_pool.WorkerThreadPool(2)

        n_chn = 0

        if exp == 'svhn_mnist':
            d_source = data_loaders.load_svhn(zero_centre=False,
                                              greyscale=True)
            d_target = data_loaders.load_mnist(invert=False,
                                               zero_centre=False,
                                               pad32=True,
                                               val=False)
        elif exp == 'mnist_svhn':
            d_source = data_loaders.load_mnist(invert=False,
                                               zero_centre=False,
                                               pad32=True)
            d_target = data_loaders.load_svhn(zero_centre=False,
                                              greyscale=True,
                                              val=False)
        elif exp == 'svhn_mnist_rgb':
            d_source = data_loaders.load_svhn(zero_centre=False,
                                              greyscale=False)
            d_target = data_loaders.load_mnist(invert=False,
                                               zero_centre=False,
                                               pad32=True,
                                               val=False,
                                               rgb=True)
        elif exp == 'mnist_svhn_rgb':
            d_source = data_loaders.load_mnist(invert=False,
                                               zero_centre=False,
                                               pad32=True,
                                               rgb=True)
            d_target = data_loaders.load_svhn(zero_centre=False,
                                              greyscale=False,
                                              val=False)
        elif exp == 'cifar_stl':
            d_source = data_loaders.load_cifar10(range_01=False)
            d_target = data_loaders.load_stl(zero_centre=False, val=False)
        elif exp == 'stl_cifar':
            d_source = data_loaders.load_stl(zero_centre=False)
            d_target = data_loaders.load_cifar10(range_01=False, val=False)
        elif exp == 'mnist_usps':
            d_source = data_loaders.load_mnist(zero_centre=False)
            d_target = data_loaders.load_usps(zero_centre=False,
                                              scale28=True,
                                              val=False)
        elif exp == 'usps_mnist':
            d_source = data_loaders.load_usps(zero_centre=False, scale28=True)
            d_target = data_loaders.load_mnist(zero_centre=False, val=False)
        elif exp == 'syndigits_svhn':
            d_source = data_loaders.load_syn_digits(zero_centre=False)
            d_target = data_loaders.load_svhn(zero_centre=False, val=False)
        elif exp == 'svhn_syndigits':
            d_source = data_loaders.load_svhn(zero_centre=False, val=False)
            d_target = data_loaders.load_syn_digits(zero_centre=False)
        elif exp == 'synsigns_gtsrb':
            d_source = data_loaders.load_syn_signs(zero_centre=False)
            d_target = data_loaders.load_gtsrb(zero_centre=False, val=False)
        elif exp == 'gtsrb_synsigns':
            d_source = data_loaders.load_gtsrb(zero_centre=False, val=False)
            d_target = data_loaders.load_syn_signs(zero_centre=False)
        else:
            print('Unknown experiment type \'{}\''.format(exp))
            return

        # Delete the training ground truths as we should not be using them
        del d_target.train_y

        if standardise_samples:
            standardisation.standardise_dataset(d_source)
            standardisation.standardise_dataset(d_target)

        n_classes = d_source.n_classes

        print('Loaded data')

        if arch == '':
            if exp in {'mnist_usps', 'usps_mnist'}:
                arch = 'mnist-bn-32-64-256'
            if exp in {'svhn_mnist', 'mnist_svhn'}:
                arch = 'grey-32-64-128-gp'
            if exp in {
                    'cifar_stl', 'stl_cifar', 'syndigits_svhn',
                    'svhn_syndigits', 'svhn_mnist_rgb', 'mnist_svhn_rgb'
            }:
                arch = 'rgb-48-96-192-gp'
            if exp in {'synsigns_gtsrb', 'gtsrb_synsigns'}:
                arch = 'rgb40-48-96-192-384-gp'

        net_class, expected_shape = network_architectures.get_net_and_shape_for_architecture(
            arch)

        if expected_shape != d_source.train_X.shape[1:]:
            print(
                'Architecture {} not compatible with experiment {}; it needs samples of shape {}, '
                'data has samples of shape {}'.format(
                    arch, exp, expected_shape, d_source.train_X.shape[1:]))
            return

        net = net_class(n_classes).cuda()
        params = list(net.parameters())

        optimizer = torch.optim.Adam(params, lr=learning_rate)
        classification_criterion = nn.CrossEntropyLoss()

        print('Built network')

        aug = augmentation.ImageAugmentation(
            hflip,
            xlat_range,
            affine_std,
            intens_scale_range_lower=intens_scale_range_lower,
            intens_scale_range_upper=intens_scale_range_upper,
            intens_offset_range_lower=intens_offset_range_lower,
            intens_offset_range_upper=intens_offset_range_upper,
            intens_flip=intens_flip,
            gaussian_noise_std=gaussian_noise_std)

        def augment(X_sup, y_sup):
            X_sup = aug.augment(X_sup)
            return [X_sup, y_sup]

        def f_train(X_sup, y_sup):
            X_sup = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
            y_sup = torch.autograd.Variable(
                torch.from_numpy(y_sup).long().cuda())

            optimizer.zero_grad()
            net.train(mode=True)

            sup_logits_out = net(X_sup)

            # Supervised classification loss
            clf_loss = classification_criterion(sup_logits_out, y_sup)

            loss_expr = clf_loss

            loss_expr.backward()
            optimizer.step()

            n_samples = X_sup.size()[0]

            return float(clf_loss.data.cpu().numpy()) * n_samples

        print('Compiled training function')

        def f_pred_src(X_sup):
            X_var = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
            net.train(mode=False)
            return F.softmax(net(X_var)).data.cpu().numpy()

        def f_pred_tgt(X_sup):
            X_var = torch.autograd.Variable(torch.from_numpy(X_sup).cuda())
            net.train(mode=False)
            return F.softmax(net(X_var)).data.cpu().numpy()

        def f_eval_src(X_sup, y_sup):
            y_pred_prob = f_pred_src(X_sup)
            y_pred = np.argmax(y_pred_prob, axis=1)
            return float((y_pred != y_sup).sum())

        def f_eval_tgt(X_sup, y_sup):
            y_pred_prob = f_pred_tgt(X_sup)
            y_pred = np.argmax(y_pred_prob, axis=1)
            return float((y_pred != y_sup).sum())

        print('Compiled evaluation function')

        # Setup output
        def log(text):
            print(text)
            if log_file is not None:
                with open(log_file, 'a') as f:
                    f.write(text + '\n')
                    f.flush()
                    f.close()

        cmdline_helpers.ensure_containing_dir_exists(log_file)

        # Report setttings
        log('sys.argv={}'.format(sys.argv))

        # Report dataset size
        log('Dataset:')
        log('SOURCE Train: X.shape={}, y.shape={}'.format(
            d_source.train_X.shape, d_source.train_y.shape))
        log('SOURCE Test: X.shape={}, y.shape={}'.format(
            d_source.test_X.shape, d_source.test_y.shape))
        log('TARGET Train: X.shape={}'.format(d_target.train_X.shape))
        log('TARGET Test: X.shape={}, y.shape={}'.format(
            d_target.test_X.shape, d_target.test_y.shape))

        print('Training...')
        train_ds = data_source.ArrayDataSource(
            [d_source.train_X, d_source.train_y]).map(augment)

        source_test_ds = data_source.ArrayDataSource(
            [d_source.test_X, d_source.test_y])
        target_test_ds = data_source.ArrayDataSource(
            [d_target.test_X, d_target.test_y])

        if seed != 0:
            shuffle_rng = np.random.RandomState(seed)
        else:
            shuffle_rng = np.random

        best_src_test_err = 1.0
        for epoch in range(num_epochs):
            t1 = time.time()

            train_res = train_ds.batch_map_mean(f_train,
                                                batch_size=batch_size,
                                                shuffle=shuffle_rng)

            train_clf_loss = train_res[0]
            src_test_err, = source_test_ds.batch_map_mean(
                f_eval_src, batch_size=batch_size * 4)
            tgt_test_err, = target_test_ds.batch_map_mean(
                f_eval_tgt, batch_size=batch_size * 4)

            t2 = time.time()

            if src_test_err < best_src_test_err:
                log('*** Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}; '
                    'SRC TEST ERR={:.3%}, TGT TEST err={:.3%}'.format(
                        epoch, t2 - t1, train_clf_loss, src_test_err,
                        tgt_test_err))
                best_src_test_err = src_test_err
            else:
                log('Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}; '
                    'SRC TEST ERR={:.3%}, TGT TEST err={:.3%}'.format(
                        epoch, t2 - t1, train_clf_loss, src_test_err,
                        tgt_test_err))