Ejemplo n.º 1
0
def evaluate(args):
    # file paths
    system_pred_file = args['output_file']
    gold_file = args['gold_file']
    model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \
            else '{}/{}_tagger.pt'.format(args['save_dir'], args['shorthand'])

    # load pretrain; note that we allow the pretrain_file to be non-existent
    pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'],
                                               args['shorthand'])
    pretrain = Pretrain(pretrain_file)

    # load model
    print("Loading model from: {}".format(model_file))
    use_cuda = args['cuda'] and not args['cpu']
    trainer = Trainer(pretrain=pretrain,
                      model_file=model_file,
                      use_cuda=use_cuda)
    loaded_args, vocab = trainer.args, trainer.vocab

    # load config
    for k in args:
        if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand'
                                                              ] or k == 'mode':
            loaded_args[k] = args[k]

    # load data
    print("Loading data with batch size {}...".format(args['batch_size']))
    doc = Document(CoNLL.conll2dict(input_file=args['eval_file']))
    batch = DataLoader(doc,
                       args['batch_size'],
                       loaded_args,
                       pretrain,
                       vocab=vocab,
                       evaluation=True,
                       sort_during_eval=True)
    if len(batch) > 0:
        print("Start evaluation...")
        preds = []
        for i, b in enumerate(batch):
            preds += trainer.predict(b)
    else:
        # skip eval if dev data does not exist
        preds = []
    preds = utils.unsort(preds, batch.data_orig_idx)

    # write to file and score
    batch.doc.set([UPOS, XPOS, FEATS], [y for x in preds for y in x])
    CoNLL.dict2conll(batch.doc.to_dict(), system_pred_file)

    if gold_file is not None:
        _, _, score = scorer.score(system_pred_file, gold_file)

        print("Tagger score:")
        print("{} {:.2f}".format(args['shorthand'], score * 100))
Ejemplo n.º 2
0
 def _set_up_model(self, config, use_gpu):
     # get pretrained word vectors
     self._pretrain = Pretrain(config['pretrain_path'])
     # set up trainer
     self._trainer = Trainer(pretrain=self.pretrain,
                             model_file=config['model_path'],
                             use_cuda=use_gpu)
Ejemplo n.º 3
0
 def _set_up_model(self, config, use_gpu):
     # get pretrained word vectors
     self._pretrain = Pretrain(
         config['pretrain_path']) if 'pretrain_path' in config else None
     # set up trainer
     self._trainer = Trainer(pretrain=self.pretrain,
                             model_file=config['model_path'],
                             use_cuda=use_gpu)
     self._tqdm = 'tqdm' in config and config['tqdm']
Ejemplo n.º 4
0
 def _set_up_model(self, config, use_gpu):
     # get pretrained word vectors
     self._pretrain = Pretrain(
         config['pretrain_path']) if 'pretrain_path' in config else None
     self._n_pred = config['n_pred'] if 'n_pred' in config else 1
     # set up trainer
     self._trainer = Trainer(pretrain=self.pretrain,
                             model_file=config['model_path'],
                             use_cuda=use_gpu,
                             n_pred=self._n_pred)
Ejemplo n.º 5
0
def evaluate(args):
    # file paths
    system_pred_file = args['output_file']
    gold_file = args['gold_file']
    model_file = model_file_name(args)

    pretrain = load_pretrain(args)

    # load model
    logger.info("Loading model from: {}".format(model_file))
    use_cuda = args['cuda'] and not args['cpu']
    trainer = Trainer(pretrain=pretrain, model_file=model_file, use_cuda=use_cuda)
    loaded_args, vocab = trainer.args, trainer.vocab

    # load config
    for k in args:
        if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand'] or k == 'mode':
            loaded_args[k] = args[k]

    # load data
    logger.info("Loading data with batch size {}...".format(args['batch_size']))
    doc = CoNLL.conll2doc(input_file=args['eval_file'])
    batch = DataLoader(doc, args['batch_size'], loaded_args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True)
    if len(batch) > 0:
        logger.info("Start evaluation...")
        preds = []
        for i, b in enumerate(batch):
            preds += trainer.predict(b)
    else:
        # skip eval if dev data does not exist
        preds = []
    preds = utils.unsort(preds, batch.data_orig_idx)

    # write to file and score
    batch.doc.set([UPOS, XPOS, FEATS], [y for x in preds for y in x])
    CoNLL.write_doc2conll(batch.doc, system_pred_file)

    if gold_file is not None:
        _, _, score = scorer.score(system_pred_file, gold_file)

        logger.info("Tagger score:")
        logger.info("{} {:.2f}".format(args['shorthand'], score*100))
Ejemplo n.º 6
0
def evaluate(args):
    # file paths
    system_pred_file = args['output_file']
    gold_file = args['gold_file']
    model_file = model_file_name(args)

    pretrain = load_pretrain(args)

    # load model
    train_doc = Document(CoNLL.conll2dict(input_file=args['eval_file']))
    logger.info("Loading model from: {}".format(model_file))
    use_cuda = args['cuda'] and not args['cpu']
    trainer = Trainer(doc=train_doc,
                      pretrain=pretrain,
                      model_file=model_file,
                      use_cuda=use_cuda)
    loaded_args, vocab = trainer.args, trainer.vocab

    # load config
    for k in args:
        if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand'
                                                              ] or k == 'mode':
            loaded_args[k] = args[k]

    # load data
    logger.info("Loading data with batch size {}...".format(
        args['batch_size']))
    doc = Document(CoNLL.conll2dict(input_file=args['eval_file']))
    batch = DataLoader(doc,
                       args['batch_size'],
                       loaded_args,
                       pretrain,
                       vocab=vocab,
                       evaluation=True,
                       sort_during_eval=False)
    if len(batch) > 0:
        logger.info("Start evaluation...")
        preds = []
        if args['morph_dict']:
            print('Collecting morph dictionary...')
            morph_dict = MorphDictionary(args['morph_dict'])
            print('Completed.')
        else:
            morph_dict = None
        start = 0
        end = 0
        for i, b in enumerate(batch):
            end += len(b[8])  # b[8] is orig_idx
            # data_orig_idx=batch.data_orig_idx,
            preds += trainer.predict(b,
                                     morph_dict=morph_dict,
                                     start=start,
                                     end=end)
            start += len(b[8])
    else:
        # skip eval if dev data does not exist
        preds = []
    # sorting is disabled by sort_during_eval=False, no need to unsort
    # preds = utils.unsort(preds, batch.data_orig_idx)

    # write to file and score
    batch.doc.set([UPOS, XPOS, FEATS], [y for x in preds for y in x])
    CoNLL.dict2conll(batch.doc.to_dict(), system_pred_file)

    if gold_file is not None:
        _, _, score = scorer.score(system_pred_file, gold_file)

        logger.info("Tagger score:")
        logger.info("{} {:.2f}".format(args['shorthand'], score * 100))
Ejemplo n.º 7
0
def train(args):
    model_file = model_file_name(args)
    utils.ensure_dir(os.path.split(model_file)[0])

    # load pretrained vectors if needed
    pretrain = load_pretrain(args)

    # load data
    logger.info("Loading data with batch size {}...".format(
        args['batch_size']))
    # train_data is now a list of sentences, where each sentence is a
    # list of words, in which each word is a dict of conll attributes
    train_data = CoNLL.conll2dict(input_file=args['train_file'])
    # possibly augment the training data with some amount of fake data
    # based on the options chosen
    logger.info("Original data size: {}".format(len(train_data)))
    train_data.extend(
        augment_punct(train_data,
                      args['augment_nopunct'],
                      keep_original_sentences=False))
    logger.info("Augmented data size: {}".format(len(train_data)))
    train_doc = Document(train_data)
    train_batch = DataLoader(train_doc,
                             args['batch_size'],
                             args,
                             pretrain,
                             evaluation=False)
    vocab = train_batch.vocab
    dev_doc = Document(CoNLL.conll2dict(input_file=args['eval_file']))
    dev_batch = DataLoader(dev_doc,
                           args['batch_size'],
                           args,
                           pretrain,
                           vocab=vocab,
                           evaluation=True,
                           sort_during_eval=True)

    # pred and gold path
    system_pred_file = args['output_file']
    gold_file = args['gold_file']

    # skip training if the language does not have training or dev data
    if len(train_batch) == 0 or len(dev_batch) == 0:
        logger.info("Skip training because no data available...")
        return

    logger.info("Training tagger...")
    trainer = Trainer(args=args,
                      vocab=vocab,
                      pretrain=pretrain,
                      use_cuda=args['cuda'])

    global_step = 0
    max_steps = args['max_steps']
    dev_score_history = []
    best_dev_preds = []
    current_lr = args['lr']
    global_start_time = time.time()
    format_str = 'Finished STEP {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'

    if args['adapt_eval_interval']:
        args['eval_interval'] = utils.get_adaptive_eval_interval(
            dev_batch.num_examples, 2000, args['eval_interval'])
        logger.info("Evaluating the model every {} steps...".format(
            args['eval_interval']))

    using_amsgrad = False
    last_best_step = 0
    # start training
    train_loss = 0
    while True:
        do_break = False
        for i, batch in enumerate(train_batch):
            start_time = time.time()
            global_step += 1
            loss = trainer.update(batch, eval=False)  # update step
            train_loss += loss
            if global_step % args['log_step'] == 0:
                duration = time.time() - start_time
                logger.info(
                    format_str.format(global_step, max_steps, loss, duration,
                                      current_lr))

            if global_step % args['eval_interval'] == 0:
                # eval on dev
                logger.info("Evaluating on dev set...")
                dev_preds = []
                for batch in dev_batch:
                    preds = trainer.predict(batch)
                    dev_preds += preds
                dev_preds = utils.unsort(dev_preds, dev_batch.data_orig_idx)
                dev_batch.doc.set([UPOS, XPOS, FEATS],
                                  [y for x in dev_preds for y in x])
                CoNLL.dict2conll(dev_batch.doc.to_dict(), system_pred_file)
                _, _, dev_score = scorer.score(system_pred_file, gold_file)

                train_loss = train_loss / args[
                    'eval_interval']  # avg loss per batch
                logger.info(
                    "step {}: train_loss = {:.6f}, dev_score = {:.4f}".format(
                        global_step, train_loss, dev_score))
                train_loss = 0

                # save best model
                if len(dev_score_history
                       ) == 0 or dev_score > max(dev_score_history):
                    last_best_step = global_step
                    trainer.save(model_file)
                    logger.info("new best model saved.")
                    best_dev_preds = dev_preds

                dev_score_history += [dev_score]

            if global_step - last_best_step >= args['max_steps_before_stop']:
                if not using_amsgrad:
                    logger.info("Switching to AMSGrad")
                    last_best_step = global_step
                    using_amsgrad = True
                    trainer.optimizer = optim.Adam(trainer.model.parameters(),
                                                   amsgrad=True,
                                                   lr=args['lr'],
                                                   betas=(.9, args['beta2']),
                                                   eps=1e-6)
                else:
                    logger.info(
                        "Early termination: have not improved in {} steps".
                        format(args['max_steps_before_stop']))
                    do_break = True
                    break

            if global_step >= args['max_steps']:
                do_break = True
                break

        if do_break: break

        train_batch.reshuffle()

    logger.info("Training ended with {} steps.".format(global_step))

    if len(dev_score_history) > 0:
        best_f, best_eval = max(dev_score_history) * 100, np.argmax(
            dev_score_history) + 1
        logger.info("Best dev F1 = {:.2f}, at iteration = {}".format(
            best_f, best_eval * args['eval_interval']))
    else:
        logger.info("Dev set never evaluated.  Saving final model.")
        trainer.save(model_file)
Ejemplo n.º 8
0
def train(args):
    utils.ensure_dir(args['save_dir'])
    model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \
            else '{}/{}_tagger.pt'.format(args['save_dir'], args['shorthand'])

    # load pretrained vectors if needed
    pretrain = None
    if args['pretrain']:
        vec_file = args['wordvec_file'] if args[
            'wordvec_file'] else utils.get_wordvec_file(
                args['wordvec_dir'], args['shorthand'])
        pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'],
                                                   args['shorthand'])
        pretrain = Pretrain(pretrain_file, vec_file,
                            args['pretrain_max_vocab'])

    # load data
    print("Loading data with batch size {}...".format(args['batch_size']))
    train_doc = Document(CoNLL.conll2dict(input_file=args['train_file']))
    train_batch = DataLoader(train_doc,
                             args['batch_size'],
                             args,
                             pretrain,
                             evaluation=False)
    vocab = train_batch.vocab
    dev_doc = Document(CoNLL.conll2dict(input_file=args['eval_file']))
    dev_batch = DataLoader(dev_doc,
                           args['batch_size'],
                           args,
                           pretrain,
                           vocab=vocab,
                           evaluation=True,
                           sort_during_eval=True)

    # pred and gold path
    system_pred_file = args['output_file']
    gold_file = args['gold_file']

    # skip training if the language does not have training or dev data
    if len(train_batch) == 0 or len(dev_batch) == 0:
        print("Skip training because no data available...")
        sys.exit(0)

    print("Training tagger...")
    trainer = Trainer(args=args,
                      vocab=vocab,
                      pretrain=pretrain,
                      use_cuda=args['cuda'])

    global_step = 0
    max_steps = args['max_steps']
    dev_score_history = []
    best_dev_preds = []
    current_lr = args['lr']
    global_start_time = time.time()
    format_str = '{}: step {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'

    if args['adapt_eval_interval']:
        args['eval_interval'] = utils.get_adaptive_eval_interval(
            dev_batch.num_examples, 2000, args['eval_interval'])
        print("Evaluating the model every {} steps...".format(
            args['eval_interval']))

    using_amsgrad = False
    last_best_step = 0
    # start training
    train_loss = 0
    while True:
        do_break = False
        for i, batch in enumerate(train_batch):
            start_time = time.time()
            global_step += 1
            loss = trainer.update(batch, eval=False)  # update step
            train_loss += loss
            if global_step % args['log_step'] == 0:
                duration = time.time() - start_time
                print(format_str.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), global_step,\
                        max_steps, loss, duration, current_lr))

            if global_step % args['eval_interval'] == 0:
                # eval on dev
                print("Evaluating on dev set...")
                dev_preds = []
                for batch in dev_batch:
                    preds = trainer.predict(batch)
                    dev_preds += preds
                dev_preds = utils.unsort(dev_preds, dev_batch.data_orig_idx)
                dev_batch.doc.set([UPOS, XPOS, FEATS],
                                  [y for x in dev_preds for y in x])
                CoNLL.dict2conll(dev_batch.doc.to_dict(), system_pred_file)
                _, _, dev_score = scorer.score(system_pred_file, gold_file)

                train_loss = train_loss / args[
                    'eval_interval']  # avg loss per batch
                print(
                    "step {}: train_loss = {:.6f}, dev_score = {:.4f}".format(
                        global_step, train_loss, dev_score))
                train_loss = 0

                # save best model
                if len(dev_score_history
                       ) == 0 or dev_score > max(dev_score_history):
                    last_best_step = global_step
                    trainer.save(model_file)
                    print("new best model saved.")
                    best_dev_preds = dev_preds

                dev_score_history += [dev_score]
                print("")

            if global_step - last_best_step >= args['max_steps_before_stop']:
                if not using_amsgrad:
                    print("Switching to AMSGrad")
                    last_best_step = global_step
                    using_amsgrad = True
                    trainer.optimizer = optim.Adam(trainer.model.parameters(),
                                                   amsgrad=True,
                                                   lr=args['lr'],
                                                   betas=(.9, args['beta2']),
                                                   eps=1e-6)
                else:
                    do_break = True
                    break

            if global_step >= args['max_steps']:
                do_break = True
                break

        if do_break: break

        train_batch.reshuffle()

    print("Training ended with {} steps.".format(global_step))

    best_f, best_eval = max(dev_score_history) * 100, np.argmax(
        dev_score_history) + 1
    print("Best dev F1 = {:.2f}, at iteration = {}".format(
        best_f, best_eval * args['eval_interval']))