def predict(): saved = state.load('model') #saved = None if debug_mode: saved = None if saved == None: train, y, test, _ = data.get() ftrain, ftest, _ = fea_1.get() ftrain2, ftest2, _ = fea_2.get() train = pd.concat([train, ftrain, ftrain2], axis=1) test = pd.concat([test, ftest, ftest2], axis=1) print(train.shape, test.shape) z = pd.DataFrame() z['id'] = test.id z['y'] = 0 v = pd.DataFrame() v['id'] = train.id v['y'] = y cv, _ = run(train, y, test, v, z) state.save('model', (v, z, cv, None)) else: v, z, cv, _ = saved return v, z, cv, _ if '__main__' == __name__: print('starting', state.now()) state.run_predict(predict, debug_mode, public_score) print('done.', state.now())
saved = state.load('model') #saved = None if debug_mode: saved = None if saved == None: train, y, test, _ = data.get() ftrain, ftest, _ = fea_1.get() ftrain2, ftest2, _ = fea_2.get() train = pd.concat([train, ftrain, ftrain2], axis=1) test = pd.concat([test, ftest, ftest2], axis=1) print(train.shape, test.shape) z = pd.DataFrame() z['id'] = test.id z['y'] = 0 v = pd.DataFrame() v['id'] = train.id v['y'] = y cv, _ = run(train, y, test, v, z) state.save('model', (v, z, cv, None)) else: v, z, cv, _ = saved return v, z, cv, _ if '__main__' == __name__: print('starting', state.now()) state.run_predict(predict, debug_mode, public_score) print('done.', state.now())