Ejemplo n.º 1
0
 def test_s_fmt_lineoptions(self, close_figures):
     qqline(self.ax,
            "s",
            x=self.x,
            y=self.y,
            fmt=self.fmt,
            **self.lineoptions)
Ejemplo n.º 2
0
 def test_q_fmt_lineoptions(self, close_figures):
     qqline(
         self.ax,
         "q",
         dist=stats.norm,
         x=self.x,
         y=self.y,
         fmt=self.fmt,
         **self.lineoptions,
     )
Ejemplo n.º 3
0
 def test_q_fmt(self, close_figures):
     qqline(self.ax, "q", dist=stats.norm, x=self.x, y=self.y, fmt=self.fmt)
Ejemplo n.º 4
0
 def test_q(self, close_figures):
     nchildren = len(self.ax.get_children())
     qqline(self.ax, "q", dist=stats.norm, x=self.x, y=self.y)
     assert len(self.ax.get_children()) > nchildren
Ejemplo n.º 5
0
 def test_s(self, close_figures):
     nchildren = len(self.ax.get_children())
     qqline(self.ax, "s", x=self.x, y=self.y)
     assert len(self.ax.get_children()) > nchildren
Ejemplo n.º 6
0
 def test_s_fmt(self, close_figures):
     qqline(self.ax, "s", x=self.x, y=self.y, fmt=self.fmt)
Ejemplo n.º 7
0
 def test_45_fmt(self, close_figures):
     qqline(self.ax, "45", fmt=self.fmt)
Ejemplo n.º 8
0
 def test_45_fmt_lineoptions(self, close_figures):
     qqline(self.ax, "45", fmt=self.fmt, **self.lineoptions)
Ejemplo n.º 9
0
 def test_non45_no_x_no_y(self, close_figures):
     with pytest.raises(ValueError):
         qqline(self.ax, "s")
Ejemplo n.º 10
0
 def test_45(self, close_figures):
     nchildren = len(self.ax.get_children())
     qqline(self.ax, "45")
     assert len(self.ax.get_children()) > nchildren
Ejemplo n.º 11
0
 def test_badline(self):
     with pytest.raises(ValueError):
         qqline(self.ax, "junk")
# Build a regression model for 'stay' versus 't'
model1 = smf.ols('stay ~ t', data=brexit).fit()

# Examine the model output
model1.summary()
model1.summary2()

# Produce the following diagnostic plots:

# * Predicted versus observed
sns.jointplot(brexit.stay, model1.fittedvalues)

# * Residuals versus predicted
sns.jointplot(model1.fittedvalues, model1.resid)

# * Residuals versus 't'
sns.pointplot(brexit.t, model1.resid, join=False)

# * Autocorrelation plot
autocorrelation_plot(model1.resid)

# * Normal Q-Q plot for (Studentised) residuals
st_resid = model1.get_influence().get_resid_studentized_external()
qq = smg.qqplot(st_resid)
smg.qqline(qq.gca(), '45')

# BONUS: Build a second regression model for 'stay' versus 't' and 'pollster',
#        and re-run all of the above
model2 = smf.ols('stay ~ t + pollster', data=brexit).fit()

Ejemplo n.º 13
0
'''
    Import the food expenditure dataset.  Plot annual food expenditure on
    x-axis and household income on y-axis.  Use qqline to add regression line
    into the plot.
'''
import matplotlib.pyplot as plt

import statsmodels.api as sm
from statsmodels.graphics.gofplots import qqline

foodexp = sm.datasets.engel.load()
x = foodexp.exog
y = foodexp.endog
ax = plt.subplot(111)
plt.scatter(x, y)
ax.set_xlabel(foodexp.exog_name[0])
ax.set_ylabel(foodexp.endog_name)
qqline(ax, 'r', x, y)
plt.show()
Ejemplo n.º 14
0
plt.boxplot(fat)
plt.show()

# (c)

plt.scatter(age, fat, c="green", alpha=0.5)
plt.show()

stats.probplot(age, dist="norm", plot=pylab)
stats.probplot(fat, dist="norm", plot=pylab)
pylab.show()

ax = plt.subplot(111)
plt.scatter(age, fat)
qqline(ax, 'r', age, fat)
plt.show()

#########################################################

# 4.


# (a)
def cos_sim(A, B):
    return dot(A, B) / (norm(A) * norm(B))


print(cos_sim((1.5, 1.7), (1.4, 1.6)))
print(cos_sim((2.0, 1.9), (1.4, 1.6)))
print(cos_sim((1.6, 1.8), (1.4, 1.6)))
'''
    Import the food expenditure dataset.  Plot annual food expendeture on
    x-axis and household income on y-axis.  Use qqline to add regression line
    into the plot.
'''
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.graphics.gofplots import qqline

foodexp = sm.datasets.engel.load(as_pandas=False)
x = foodexp.exog
y = foodexp.endog
ax = plt.subplot(111)
plt.scatter(x, y)
ax.set_xlabel(foodexp.exog_name[0])
ax.set_ylabel(foodexp.endog_name)
qqline(ax, 'r', x, y)
plt.show()