Ejemplo n.º 1
0
    def setup_class(cls):

        nobs = 500
        ar = [1, -0.5, 0.1]
        ma = [1, 0.7]
        dist = lambda n: np.random.standard_t(3, size=n)
        np.random.seed(8659567)
        x = arma_generate_sample(ar, ma, nobs, sigma=1, distrvs=dist,
                                 burnin=500)

        mod = TArma(x)
        order = (2, 1)
        cls.res_ls = mod.fit(order=order)
        cls.res = mod.fit_mle(order=order,
                              start_params=np.r_[cls.res_ls[0], 5, 1],
                              method='nm', disp=False)

        cls.res1_table = np.array(
          [[  0.46157133,  -0.07694534,   0.70051876,  2.88693312,  0.97283396],
           [  0.04957594,   0.04345499,   0.03492473,  0.40854823,  0.05568439],
           [  9.31038915,  -1.7706905 ,  20.05795605,  7.06632146, 17.47049812],
           [  0.        ,   0.07661218,   0.        ,  0.        ,  0.        ],
           [  0.05487968,   0.04213054,   0.03102404,  0.37860956,  0.05228474],
           [  0.04649728,   0.04569133,   0.03990779,  0.44315449,  0.05996759]])

        cls.res1_conf_int = np.array([[ 0.36440426,  0.55873839],
                                   [-0.16211556,  0.00822488],
                                   [ 0.63206754,  0.76896998],
                                   [ 2.08619331,  3.68767294],
                                   [ 0.86369457,  1.08197335]])


        cls.ls_params = np.array([ 0.43393123, -0.08402678,  0.73293058])
        cls.ls_bse = np.array([ 0.0377741 ,  0.03567847,  0.02744488])
Ejemplo n.º 2
0
    def setup_class(cls):

        nobs = 500
        ar = [1, -0.5, 0.1]
        ma = [1, 0.7]
        dist = lambda n: np.random.standard_t(3, size=n)
        np.random.seed(8659567)
        x = arma_generate_sample(ar, ma, nobs, sigma=1, distrvs=dist,
                                 burnin=500)

        mod = TArma(x)
        order = (2, 1)
        cls.res_ls = mod.fit(order=order)
        cls.res = mod.fit_mle(order=order,
                              start_params=np.r_[cls.res_ls[0], 5, 1],
                              method='nm', disp=False)

        cls.res1_table = np.array(
          [[  0.46157133,  -0.07694534,   0.70051876,  2.88693312,  0.97283396],
           [  0.04957594,   0.04345499,   0.03492473,  0.40854823,  0.05568439],
           [  9.31038915,  -1.7706905 ,  20.05795605,  7.06632146, 17.47049812],
           [  0.        ,   0.07661218,   0.        ,  0.        ,  0.        ],
           [  0.05487968,   0.04213054,   0.03102404,  0.37860956,  0.05228474],
           [  0.04649728,   0.04569133,   0.03990779,  0.44315449,  0.05996759]])

        cls.res1_conf_int = np.array([[ 0.36440426,  0.55873839],
                                   [-0.16211556,  0.00822488],
                                   [ 0.63206754,  0.76896998],
                                   [ 2.08619331,  3.68767294],
                                   [ 0.86369457,  1.08197335]])


        cls.ls_params = np.array([ 0.43393123, -0.08402678,  0.73293058])
        cls.ls_bse = np.array([ 0.0377741 ,  0.03567847,  0.02744488])
Ejemplo n.º 3
0
#decimal 1 corresponds to threshold of 5% difference
assert_almost_equal(resls[0] / d.res.params, 1, decimal=1)
assert_almost_equal(rescm.params[:-1] / d.res.params, 1, decimal=1)
#copied to tsa.tests

plt.figure()
plt.plot(x, 'b-o')
plt.plot(modc.predicted(), 'r-')
plt.figure()
plt.plot(modc.error_estimate)
#plt.show()

from statsmodels.miscmodels.tmodel import TArma

modct = TArma(x)
reslst = modc.fit(order=(1,1))
print(reslst[0])
rescmt = modct.fit_mle(order=(1,1), start_params=[-0.4,0.4, 10, 1.],maxiter=500,
                       maxfun=500)
print(rescmt.params)


from statsmodels.tsa.arima_model import ARMA
mkf = ARMA(x)
##rkf = mkf.fit((1,1))
##rkf.params
rkf = mkf.fit((1,1), trend='nc')
print(rkf.params)

from statsmodels.tsa.arima_process import arma_generate_sample
Ejemplo n.º 4
0
from __future__ import print_function
import numpy as np

from statsmodels.tsa.arima_process import arma_generate_sample, ArmaProcess
from statsmodels.miscmodels.tmodel import TArma
from statsmodels.tsa.arima_model import ARMA

nobs = 500
ar = [1, -0.6, -0.1]
ma = [1, 0.7]
dist = lambda n: np.random.standard_t(3, size=n)
np.random.seed(8659567)
x = arma_generate_sample(ar, ma, nobs, sigma=1, distrvs=dist,
                         burnin=500)

mod = TArma(x)
order = (2, 1)
res = mod.fit(order=order)
res2 = mod.fit_mle(order=order, start_params=np.r_[res[0], 5, 1], method='nm')

print(res[0])
proc = ArmaProcess.from_coeffs(res[0][:order[0]], res[0][:order[1]])

print(ar, ma)
proc.nobs = nobs
# TODO: bug nobs is None, not needed ?, used in ArmaProcess.__repr__
print(proc.ar, proc.ma)

print(proc.ar_roots(), proc.ma_roots())

from statsmodels.tsa.arma_mle import Arma