Ejemplo n.º 1
0
def breusch_pagan_test(resid, exog):
    '''
    Perform Breush-Paga test and print out results.

    Parameters:
        resid - ols residuals, Series or array
        exog - dataframe or matrix like structure
    '''
    print('(Calculation: sigma_i = sigma * f(alpha_0 + alpha z_i))')
    name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f_pvalue']
    test = sms.het_breushpagan(resid, exog)

    table = [[n, v] for n, v in zip(name, test)]
    headers = ["Statistic", "Value"]
    print(tabulate(table, headers, tablefmt="simple"))

    return test
Ejemplo n.º 2
0
print(plot_leverage_resid2(results))

# Other plotting options can be found on the [Graphics page.](http://www.statsmodels.org/stable/graphics.html)

# ## Multicollinearity
#
# Condition number:

np.linalg.cond(results.model.exog)

# ## Heteroskedasticity tests
#
# Breush-Pagan test:

name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value']
test = sms.het_breushpagan(results.resid, results.model.exog)
lzip(name, test)

# Goldfeld-Quandt test

name = ['F statistic', 'p-value']
test = sms.het_goldfeldquandt(results.resid, results.model.exog)
lzip(name, test)

# ## Linearity
#
# Harvey-Collier multiplier test for Null hypothesis that the linear specification is correct:

name = ['t value', 'p value']
test = sms.linear_harvey_collier(results)
lzip(name, test)
# Other plotting options can be found on the [Graphics page.](http://statsmodels.sourceforge.net/stable/graphics.html)

# ## Multicollinearity
# 
# Condition number:

np.linalg.cond(results.model.exog)


# ## Heteroskedasticity tests
# 
# Breush-Pagan test:

name = ['Lagrange multiplier statistic', 'p-value', 
        'f-value', 'f p-value']
test = sms.het_breushpagan(results.resid, results.model.exog)
lzip(name, test)


# Goldfeld-Quandt test

name = ['F statistic', 'p-value']
test = sms.het_goldfeldquandt(results.resid, results.model.exog)
lzip(name, test)


# ## Linearity
# 
# Harvey-Collier multiplier test for Null hypothesis that the linear specification is correct:

name = ['t value', 'p value']
# This block creates the objects for each statistic we'd like printed to Excel.<br>
# <br>
# It will report $R^2$, $R^2 adj,$ residuals, the f p-value, aic, the fitted model parameters, normality of the residuals, the Bruesh-Pagan Test for heteroscedasicity and the Harvey-Collier test for linearity.

# <codecell>

r_squared = model.rsquared
r_square_adj = model.rsquared_adj
residuals = model.resid
p = model.f_pvalue
aic = model.aic
pvalues = pd.DataFrame(model.pvalues)
params = pd.DataFrame(model.params)
normality = sms.jarque_bera(model.resid)
breush_pagan_hska = sms.het_breushpagan(model.resid, model.model.exog)
harvey_collier = sms.linear_harvey_collier(model)

# <headingcell level=4>

# Print the regression results to Excel

# <codecell>

Range("Results", "O6").value = "R^2"
Range("Results", "P6").value = r_squared

Range("Results", "O7").value = "R^2 Adjusted"
Range("Results", "P7").value = r_square_adj

Range("Results", "O8").value = "p-value"
Ejemplo n.º 5
0
def do_stats(df):
    # Only view those that received vacation and are employed
    df.is_employed.replace(0.0, np.nan, inplace=True)
    df.paid_vacation.replace(0.0, np.nan, inplace=True)
    df.dropna(inplace=True)
    # No longer need this dummy
    df.drop('is_employed', axis=1, inplace=True)

    # Summary stats
    if not f_exists(SUMMARY_TXT):
        summary = df.describe().T
        summary = np.round(summary, decimals=3)
        with open(SUMMARY_TXT, 'w') as f:
            f.write(summary.to_string())

    # Test for autocorrelation: scatter matrix, correlation, run OLS
    if not f_exists(SCAT_MATRIX_PNG):
        scatter_matrix(df, alpha=0.2, figsize=(64, 64), diagonal='hist')
        pylab.savefig(SCAT_MATRIX_PNG, bbox_inches='tight')
    if not f_exists(CORR_TXT):
        corr = df.corr()
        corr = corr.reindex_axis(sorted(corr.columns, key=COL_ORDER.index),
                                 axis=0)
        corr = corr.reindex_axis(sorted(corr.columns, key=COL_ORDER.index),
                                 axis=1)
        for i, k in enumerate(corr):
            row = corr[k]
            for j in range(len(row)):
                if j > i:
                    row[j] = np.nan
        with open(CORR_TXT, 'w') as f:
            f.write(np.round(corr, decimals=3).to_string(na_rep=''))
    if not f_exists(OLS1_TXT):
        ols_results = smf.ols(
            formula='vacation ~ paid_vacation + np.square(paid_vacation) + '
            'age + fam_size + is_female + income83 + salary + '
            'np.square(salary)',
            data=df).fit()
        with open(OLS1_TXT, 'w') as f:
            f.write(str(ols_results.summary()))
            f.write('\n\nCondition Number: {}'.format(
                np.linalg.cond(ols_results.model.exog)))

    # Need to drop salary, too much autocorrelation
    df.drop('salary', axis=1, inplace=True)

    # test for Heteroskedasticity
    if not f_exists(HET_BP_TXT):
        ols_results = smf.ols(
            formula='vacation ~ paid_vacation + np.square(paid_vacation) + '
            'age + fam_size + is_female + income83',
            data=df).fit()
        names = ['LM', 'LM P val.', 'F Stat.', 'F Stat. P val.']
        test = sms.het_breushpagan(ols_results.resid, ols_results.model.exog)
        f_p = test[3]
        with open(HET_BP_TXT, 'w') as f:
            str_ = '\n'.join('{}: {}'.format(n, v)
                             for n, v in zip(names, test))
            f.write(str_ + '\n\n')
            if f_p < .01:
                f.write('No Heteroskedasticity found.\n')
            else:
                f.write('Warning: Heteroskedasticity found!\n')

    # no Heteroskedasticity found
    # final OLS results
    if not f_exists(OLS2_TXT):
        ols_results = smf.ols(
            formula='vacation ~ paid_vacation + np.square(paid_vacation) + '
            'age + fam_size + is_female + income83',
            data=df).fit().get_robustcov_results(cov_type='HAC', maxlags=1)
        with open(OLS2_TXT, 'w') as f:
            f.write(str(ols_results.summary()))
            f.write('\n\nCondition Number: {}'.format(
                np.linalg.cond(ols_results.model.exog)))
    return df
data_mod = data_mod.dropna(
    axis=0, subset=['knowmeth', 'electric', 'radio', 'tv', 'bicycle'])

answer4 = data_mod.shape[0] * data_mod.shape[1]
'''
answer 5, 6
'''
m1 = smf.ols('ceb ~ heduc + urban + electric + radio + tv + bicycle +'\
                    'nevermarr + idlnchld_noans + heduc_noans + usemeth_noans +'\
                    'age + educ + religion + idlnchld + knowmeth + usemeth +'\
                    'agefm', data=data_mod)
fitted = m1.fit()
'''
answer 7
'''
bp = sms.het_breushpagan(fitted.resid, fitted.model.exog)[1]

m2 = smf.ols('ceb ~ heduc + urban + electric + radio + tv + bicycle +'\
                    'nevermarr + idlnchld_noans + heduc_noans + usemeth_noans +'\
                    'age + educ + religion + idlnchld + knowmeth + usemeth +'\
                    'agefm', data=data_mod)
fitted2 = m2.fit(cov_type='HC1')
'''
answer 8
'''

m3 = smf.ols('ceb ~ heduc + urban + electric + bicycle +'\
                    'nevermarr + idlnchld_noans + heduc_noans + usemeth_noans +'\
                    'age + educ + idlnchld + knowmeth + usemeth +'\
                    'agefm', data=data_mod)
fitted3 = m3.fit()
model_new = sm.OLS.from_formula(formula=model.model.formula, data=data)
data_new = pd.DataFrame(pp.scale(data.values[:,:-1]), columns=['Beds','Healing_days','Income','Salary','Costs'])
model_new1 = sm.OLS.from_formula(formula=model.model.formula, data=data_new).fit()
print(model_new1.summary())
import  patsy
y, X = patsy.dmatrices(model.model.formula, data, return_type='dataframe')
model_n = lm.LinearRegression()
#Кросс-Валидация
k_fold = KFold(n_splits=10)
scores = cross_val_score(model_n, X, y, cv=k_fold, scoring='r2')
predicted = cross_val_predict(model_n,X,y,cv=k_fold)

slope, intercept, r_value, p_value, std_err = st.linregress(y.values[:,0],predicted[:,0])
print(r_value*r_value)  
#Гомоскедастичность (Бреуш-Паган, Голдфильд-Квандт)
test = sms.het_breushpagan(res11.resid, res11.model.exog)
name = ['Lagrange multiplier statistic', 'p-value', 
        'f-value', 'f p-value']
print(lzip(name, test))

name = ['F statistic', 'p-value']
test = sms.het_goldfeldquandt(res11.resid, res11.model.exog)
print(lzip(name, test))

#Q-Q
st.probplot(res4.resid,plot=plt)
sm.qqplot(res11.resid, line='s')
plt.show()
#Дарбин-Уотсон
dw = sms.stattools.durbin_watson(res11.resid)
print(dw)
Ejemplo n.º 8
0
def regress_excel(filename, sheetname):
    """
    Define a function that takes in a data frame and a string to name the excel files produced and will returns results of 
    the regression performed
    inputs:
    * filename -  name of excel file containing the dates, dependent variable, and independent variables as columns, in that 
            order, will be used for both _plots.xls and _results.xlsx resulting files saved in the current working 
            directory
    * sheetname -  name of the sheet in the excel file desired, will be used for both _plots.xls and _results.xlsx resulting 
            files saved in the current working directory
    outputs: along with the [filename]_[sheetname]_plots.xls and _results.xlsx in the working directory, the function returns 
    *  Results -  has the following important attributes and methods
        * .summary() - shows a summary of the regression results
        * .params - is a pandas series of the parameters fitted by the model
    """
    dates, dependent, independent = extract_data(filename, sheetname)
    results = regress_data(dependent, independent)
    parameters = pd.Series(results.params)
    X = sm.add_constant(independent)
    fignum = 0
    # Generate test results for Breusch-Pagan LM test
    bptest = sms.het_breushpagan(results.resid, results.model.exog)

    plt.close()

    sm.qqplot(results.resid, fit=True, line='45')
    plt.title('Q-Q Plot')
    plt.savefig('qq.jpg')
    plt.close()

    predicted = results.predict(X)
    plt.plot(dates, predicted, 'r--', dates, dependent, 'b--')
    plt.title('In Sample Backtesting')
    plt.xlabel('Date')
    plt.ylabel(dependent.name)
    plt.legend()
    plt.savefig('backtest.jpg')
    plt.close()
    w = Workbook()
    ws = w.add_sheet('Plots')
    plot_to_excel('qq.jpg', w, ws, fignum)
    fignum += 1
    plot_to_excel('backtest.jpg', w, ws, fignum)
    fignum += 1

    for i in range(len(results.model.exog_names)):
        sm.graphics.plot_fit(results, results.model.exog_names[i])
        fig_name = results.model.exog_names[i] + '_fitted.jpg'
        plt.savefig(fig_name)
        plt.close()
        plot_to_excel(fig_name, w, ws, fignum)
        fignum += 1

    for i in range(len(independent.columns)):
        plt.scatter(independent.iloc[:, i], results.resid)
        plt.xlabel(independent.columns[i])
        plt.ylabel('Residuals')
        title_string = independent.columns[i] + ' vs. Residuals'
        plt.title(title_string)
        fig_name = independent.columns[i] + '_residuals.jpg'
        plt.savefig(fig_name)
        plt.close()
        plot_to_excel(fig_name, w, ws, fignum)
        fignum += 1

    save_plots = filename[0:-5] + '_' + sheetname + '_plots.xls'
    save_results = filename[0:-5] + '_' + sheetname + '_results.xlsx'

    coef_plot(results, 'Coefficients.jpg')
    plt.close()
    plot_to_excel('Coefficients.jpg', w, ws, fignum)
    fignum += 1

    writer = pd.ExcelWriter(save_results, engine='xlsxwriter')

    bptest = sms.het_breushpagan(results.resid, results.model.exog)
    bptest = pd.DataFrame([bptest[0], bptest[1]], ['LM', 'P-Value'])
    bptest.to_excel(writer, sheet_name="Breusch-Pagan")

    parameters = pd.concat(
        [results.params, results.bse, results.pvalues,
         results.conf_int()],
        axis=1)
    parameters.columns = [
        'Parameter', 'Std_Err', 'P-Value', 'Lower_Bound', 'Upper_Bound'
    ]
    parameters.to_excel(writer, sheet_name='Parameters')

    outliers = pd.concat([dates, results.outlier_test()], axis=1)
    outliers = outliers.loc[outliers['bonf(p)'] < 0.05]
    outliers.to_excel(writer, sheet_name='Outliers')

    rsquared_adj = pd.DataFrame([results.rsquared_adj])
    rsquared_adj.to_excel(writer, sheet_name='Adjusted R^2')

    aic = pd.DataFrame([results.aic])
    aic.to_excel(writer, sheet_name='AIC')

    bic = pd.DataFrame([results.bic])
    bic.to_excel(writer, sheet_name='BIC')

    dw = sm.stats.stattools.durbin_watson(results.resid)
    dw = pd.DataFrame([dw])
    dw.to_excel(writer, sheet_name='Durbin Watson')

    ftest = pd.DataFrame([results.fvalue, results.f_pvalue], ['F', 'P-Value'])
    ftest.to_excel(writer, sheet_name="F Test")

    mean_err = pd.DataFrame(
        [results.mse_model, results.mse_resid, results.mse_total],
        ['MSR', 'MSE', 'MSTO'])
    mean_err.to_excel(writer, sheet_name="Mean Squared Error")

    cov_mat = pd.DataFrame(np.cov(np.transpose(independent)))
    cov_mat.columns = independent.columns
    cov_mat.index = independent.columns
    cov_mat.to_excel(writer, sheet_name='Covariance Matrix')

    writer.save()
    w.save(save_plots)
    for file in os.listdir(os.getcwd()):
        if (file.endswith('.bmp') or file.endswith('.jpg')):
            os.remove(file)
    return results
Ejemplo n.º 9
0
import pandas as pd
import statsmodels.stats.api as sms
import statsmodels.formula.api as smf

df = pd.read_csv("trafficking_data.csv")

results = smf.ols('df["Adult victims"] ~ df["gdp"] + df["policy index"]',data=df).fit()

print sms.het_breushpagan(results.resid, results.model.exog)

def Fig_OLS_Checks():

    #fs = 10 # font size used across figures
    #color = str()
    #OrC = 'open'

    SampSizes = [5, 6, 7, 8, 9, 10, 13, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100]
    Iterations = 100

    fig = plt.figure(figsize=(12, 8))

    # MODEL PARAMETERS
    Rare_MacIntercept_pVals = [] # List to hold coefficient p-values
    Rare_MacIntercept_Coeffs = [] # List to hold coefficients

    Rich_MacIntercept_pVals = []
    Rich_MacIntercept_Coeffs = []

    Dom_MacIntercept_pVals = []
    Dom_MacIntercept_Coeffs = []

    Even_MacIntercept_pVals = []
    Even_MacIntercept_Coeffs = []

    Rare_MicIntercept_pVals = []
    Rare_MicIntercept_Coeffs = []

    Rich_MicIntercept_pVals = []
    Rich_MicIntercept_Coeffs = []

    Dom_MicIntercept_pVals = []
    Dom_MicIntercept_Coeffs = []

    Even_MicIntercept_pVals = []
    Even_MicIntercept_Coeffs = []


    Rare_MacSlope_pVals = []
    Rare_MacSlope_Coeffs = []

    Rich_MacSlope_pVals = []
    Rich_MacSlope_Coeffs = []

    Dom_MacSlope_pVals = []
    Dom_MacSlope_Coeffs = []

    Even_MacSlope_pVals = []
    Even_MacSlope_Coeffs = []

    Rare_MicSlope_pVals = []
    Rare_MicSlope_Coeffs = []

    Rich_MicSlope_pVals = []
    Rich_MicSlope_Coeffs = []

    Dom_MicSlope_pVals = []
    Dom_MicSlope_Coeffs = []

    Even_MicSlope_pVals = []
    Even_MicSlope_Coeffs = []


    RareR2List = [] # List to hold model R2
    RarepFList = [] # List to hold significance of model R2
    RichR2List = [] # List to hold model R2
    RichpFList = [] # List to hold significance of model R2
    DomR2List = [] # List to hold model R2
    DompFList = [] # List to hold significance of model R2
    EvenR2List = [] # List to hold model R2
    EvenpFList = [] # List to hold significance of model R2

    # ASSUMPTIONS OF LINEAR REGRESSION
    # 1. Error in predictor variables is negligible...presumably yes
    # 2. Variables are measured at the continuous level...yes

    # 3. The relationship is linear
    #RarepLinListHC = []
    RarepLinListRainB = []
    RarepLinListLM = []
    #RichpLinListHC = []
    RichpLinListRainB = []
    RichpLinListLM = []
    #DompLinListHC = []
    DompLinListRainB = []
    DompLinListLM = []
    #EvenpLinListHC = []
    EvenpLinListRainB = []
    EvenpLinListLM = []

    # 4. There are no significant outliers...need to find tests or measures

    # 5. Independence of observations (no serial correlation in residuals)
    RarepCorrListBG = []
    RarepCorrListF = []
    RichpCorrListBG = []
    RichpCorrListF = []
    DompCorrListBG = []
    DompCorrListF = []
    EvenpCorrListBG = []
    EvenpCorrListF = []

    # 6. Homoscedacticity
    RarepHomoHW = []
    RarepHomoHB = []
    RichpHomoHW = []
    RichpHomoHB = []
    DompHomoHW = []
    DompHomoHB = []
    EvenpHomoHW = []
    EvenpHomoHB = []

    # 7. Normally distributed residuals (errors)
    RarepNormListOmni = [] # Omnibus test for normality
    RarepNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
    RarepNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    RarepNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

    RichpNormListOmni = [] # Omnibus test for normality
    RichpNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
    RichpNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    RichpNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

    DompNormListOmni = [] # Omnibus test for normality
    DompNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
    DompNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    DompNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

    EvenpNormListOmni = [] # Omnibus test for normality
    EvenpNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
    EvenpNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    EvenpNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

    NLIST = []

    for SampSize in SampSizes:

        sRare_MacIntercept_pVals = [] # List to hold coefficient p-values
        sRare_MacIntercept_Coeffs = [] # List to hold coefficients

        sRich_MacIntercept_pVals = [] # List to hold coefficient p-values
        sRich_MacIntercept_Coeffs = [] # List to hold coefficients

        sDom_MacIntercept_pVals = []
        sDom_MacIntercept_Coeffs = []

        sEven_MacIntercept_pVals = []
        sEven_MacIntercept_Coeffs = []

        sRare_MicIntercept_pVals = []
        sRare_MicIntercept_Coeffs = []

        sRich_MicIntercept_pVals = []
        sRich_MicIntercept_Coeffs = []

        sDom_MicIntercept_pVals = []
        sDom_MicIntercept_Coeffs = []

        sEven_MicIntercept_pVals = []
        sEven_MicIntercept_Coeffs = []


        sRare_MacSlope_pVals = []
        sRare_MacSlope_Coeffs = []

        sRich_MacSlope_pVals = []
        sRich_MacSlope_Coeffs = []

        sDom_MacSlope_pVals = []
        sDom_MacSlope_Coeffs = []

        sEven_MacSlope_pVals = []
        sEven_MacSlope_Coeffs = []

        sRare_MicSlope_pVals = []
        sRare_MicSlope_Coeffs = []

        sRich_MicSlope_pVals = []
        sRich_MicSlope_Coeffs = []

        sDom_MicSlope_pVals = []
        sDom_MicSlope_Coeffs = []

        sEven_MicSlope_pVals = []
        sEven_MicSlope_Coeffs = []


        sRareR2List = [] # List to hold model R2
        sRarepFList = [] # List to hold significance of model R2
        sRichR2List = [] # List to hold model R2
        sRichpFList = [] # List to hold significance of model R2
        sDomR2List = [] # List to hold model R2
        sDompFList = [] # List to hold significance of model R2
        sEvenR2List = [] # List to hold model R2
        sEvenpFList = [] # List to hold significance of model R2

        # ASSUMPTIONS OF LINEAR REGRESSION
        # 1. Error in predictor variables is negligible...presumably yes
        # 2. Variables are measured at the continuous level...yes

        # 3. The relationship is linear
        #sRarepLinListHC = []
        sRarepLinListRainB = []
        sRarepLinListLM = []
        #sRichpLinListHC = []
        sRichpLinListRainB = []
        sRichpLinListLM = []
        #sDompLinListHC = []
        sDompLinListRainB = []
        sDompLinListLM = []
        #sEvenpLinListHC = []
        sEvenpLinListRainB = []
        sEvenpLinListLM = []

        # 4. There are no significant outliers...need to find tests or measures

        # 5. Independence of observations (no serial correlation in residuals)
        sRarepCorrListBG = []
        sRarepCorrListF = []
        sRichpCorrListBG = []
        sRichpCorrListF = []
        sDompCorrListBG = []
        sDompCorrListF = []
        sEvenpCorrListBG = []
        sEvenpCorrListF = []

        # 6. Homoscedacticity
        sRarepHomoHW = []
        sRarepHomoHB = []
        sRichpHomoHW = []
        sRichpHomoHB = []
        sDompHomoHW = []
        sDompHomoHB = []
        sEvenpHomoHW = []
        sEvenpHomoHB = []

        # 7. Normally distributed residuals (errors)
        sRarepNormListOmni = [] # Omnibus test for normality
        sRarepNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
        sRarepNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sRarepNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

        sRichpNormListOmni = [] # Omnibus test for normality
        sRichpNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
        sRichpNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sRichpNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

        sDompNormListOmni = [] # Omnibus test for normality
        sDompNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
        sDompNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sDompNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

        sEvenpNormListOmni = [] # Omnibus test for normality
        sEvenpNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
        sEvenpNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sEvenpNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance


        for iteration in range(Iterations):

            Nlist, Slist, Evarlist, ESimplist, ENeelist, EHeiplist, EQlist = [[], [], [], [], [], [], []]
            klist, Shanlist, BPlist, SimpDomlist, SinglesList, tenlist, onelist = [[], [], [], [], [], [], []]
            NmaxList, rareSkews, KindList = [[], [], []]
            NSlist = []

            ct = 0
            radDATA = []
            datasets = []
            GoodNames = ['EMPclosed', 'HMP', 'BIGN', 'TARA', 'BOVINE', 'HUMAN', 'LAUB', 'SED', 'CHU', 'CHINA', 'CATLIN', 'FUNGI', 'HYDRO', 'BBS', 'CBC', 'MCDB', 'GENTRY', 'FIA'] # all microbe data is MGRAST


            mlist = ['micro', 'macro']
            for m in mlist:
                for name in os.listdir(mydir +'data/'+m):
                    if name in GoodNames: pass
                    else: continue
                    path = mydir+'data/'+m+'/'+name+'/'+name+'-SADMetricData.txt'
                    num_lines = sum(1 for line in open(path))
                    datasets.append([name, m, num_lines])

            numMac = 0
            numMic = 0

            radDATA = []

            for d in datasets:

                name, kind, numlines = d
                lines = []
                lines = np.random.choice(range(1, numlines+1), SampSize, replace=True)

                path = mydir+'data/'+kind+'/'+name+'/'+name+'-SADMetricData.txt'

                for line in lines:
                    data = linecache.getline(path, line)
                    radDATA.append(data)

                #print name, kind, numlines, len(radDATA)

            for data in radDATA:

                data = data.split()
                if len(data) == 0:
                    print 'no data'
                    continue

                name, kind, N, S, Var, Evar, ESimp, EQ, O, ENee, EPielou, EHeip, BP, SimpDom, Nmax, McN, skew, logskew, chao1, ace, jknife1, jknife2, margalef, menhinick, preston_a, preston_S = data


                N = float(N)
                S = float(S)

                Nlist.append(float(np.log(N)))
                Slist.append(float(np.log(S)))
                NSlist.append(float(np.log(N/S)))

                Evarlist.append(float(np.log(float(Evar))))
                ESimplist.append(float(np.log(float(ESimp))))
                KindList.append(kind)

                BPlist.append(float(BP))
                NmaxList.append(float(np.log(float(BP)*float(N))))
                EHeiplist.append(float(EHeip))

                # lines for the log-modulo transformation of skewnness
                skew = float(skew)
                sign = 1
                if skew < 0: sign = -1

                lms = np.log(np.abs(skew) + 1)
                lms = lms * sign
                #if lms > 3: print name, N, S
                rareSkews.append(float(lms))

                if kind == 'macro': numMac += 1
                elif kind == 'micro': numMic += 1

                ct+=1


            #print 'Sample Size:',SampSize, ' Mic:', numMic,'Mac:', numMac

            # Multiple regression for Rarity
            d = pd.DataFrame({'N': list(Nlist)})
            d['Rarity'] = list(rareSkews)
            d['Kind'] = list(KindList)

            RarityResults = smf.ols('Rarity ~ N * Kind', d).fit() # Fit the dummy variable regression model
            #print RarityResults.summary(), '\n'

            # Multiple regression for Rarity
            d = pd.DataFrame({'N': list(Nlist)})
            d['Richness'] = list(Slist)
            d['Kind'] = list(KindList)

            RichnessResults = smf.ols('Richness ~ N * Kind', d).fit() # Fit the dummy variable regression model
            #print RichnessResults.summary(), '\n'

            # Multiple regression for Dominance
            d = pd.DataFrame({'N': list(Nlist)})
            d['Dominance'] = list(NmaxList)
            d['Kind'] = list(KindList)

            DomResults = smf.ols('Dominance ~ N * Kind', d).fit() # Fit the dummy variable regression model
            #print DomResults.summary(), '\n'

            # Multiple regression for Evenness
            d = pd.DataFrame({'N': list(Nlist)})
            d['Evenness'] = list(ESimplist)
            d['Kind'] = list(KindList)

            EvenResults = smf.ols('Evenness ~ N * Kind', d).fit() # Fit the dummy variable regression model
            #print RarityResults.summary(), '\n'

            RareResids = RarityResults.resid # residuals of the model
            RichResids = RichnessResults.resid # residuals of the model
            DomResids = DomResults.resid # residuals of the model
            EvenResids = EvenResults.resid # residuals of the model

            # MODEL RESULTS/FIT
            RareFpval = RarityResults.f_pvalue
            Rarer2 = RarityResults.rsquared # coefficient of determination
            #Adj_r2 = RareResults.rsquared_adj # adjusted
            RichFpval = RichnessResults.f_pvalue
            Richr2 = RichnessResults.rsquared # coefficient of determination
            #Adj_r2 = RichnessResults.rsquared_adj # adjusted

            DomFpval = DomResults.f_pvalue
            Domr2 = DomResults.rsquared # coefficient of determination
            #Adj_r2 = DomResults.rsquared_adj # adjusted
            EvenFpval = EvenResults.f_pvalue
            Evenr2 = EvenResults.rsquared # coefficient of determination
            #Adj_r2 = EvenResuls.rsquared_adj # adjusted

            # MODEL PARAMETERS and p-values
            Rareparams = RarityResults.params
            Rareparams = Rareparams.tolist()
            Rarepvals = RarityResults.pvalues
            Rarepvals = Rarepvals.tolist()

            Richparams = RichnessResults.params
            Richparams = Richparams.tolist()
            Richpvals = RichnessResults.pvalues
            Richpvals = Richpvals.tolist()

            Domparams = DomResults.params
            Domparams = Domparams.tolist()
            Dompvals = DomResults.pvalues
            Dompvals = Dompvals.tolist()

            Evenparams = EvenResults.params
            Evenparams = Evenparams.tolist()
            Evenpvals = EvenResults.pvalues
            Evenpvals = Evenpvals.tolist()


            sRare_MacIntercept_pVals.append(Rarepvals[0])
            sRare_MacIntercept_Coeffs.append(Rareparams[0])

            sRich_MacIntercept_pVals.append(Rarepvals[0])
            sRich_MacIntercept_Coeffs.append(Rareparams[0])

            sDom_MacIntercept_pVals.append(Dompvals[0])
            sDom_MacIntercept_Coeffs.append(Domparams[0])

            sEven_MacIntercept_pVals.append(Evenpvals[0])
            sEven_MacIntercept_Coeffs.append(Evenparams[0])

            sRare_MicIntercept_pVals.append(Rarepvals[1])
            if Rarepvals[1] > 0.05:
                sRare_MicIntercept_Coeffs.append(Rareparams[1])
            else:
                sRare_MicIntercept_Coeffs.append(Rareparams[1])

            sRich_MicIntercept_pVals.append(Richpvals[1])
            if Richpvals[1] > 0.05:
                sRich_MicIntercept_Coeffs.append(Richparams[1])
            else:
                sRich_MicIntercept_Coeffs.append(Richparams[1])

            sDom_MicIntercept_pVals.append(Dompvals[1])
            if Dompvals[1] > 0.05:
                sDom_MicIntercept_Coeffs.append(Domparams[1])
            else:
                sDom_MicIntercept_Coeffs.append(Domparams[1])

            sEven_MicIntercept_pVals.append(Evenpvals[1])
            if Evenpvals[1] > 0.05:
                sEven_MicIntercept_Coeffs.append(Evenparams[1])
            else:
                sEven_MicIntercept_Coeffs.append(Evenparams[1])


            sRare_MacSlope_pVals.append(Rarepvals[2])
            sRare_MacSlope_Coeffs.append(Rareparams[2])

            sRich_MacSlope_pVals.append(Richpvals[2])
            sRich_MacSlope_Coeffs.append(Richparams[2])

            sDom_MacSlope_pVals.append(Dompvals[2])
            sDom_MacSlope_Coeffs.append(Domparams[2])

            sEven_MacSlope_pVals.append(Evenpvals[2])
            sEven_MacSlope_Coeffs.append(Evenparams[2])


            sRare_MicSlope_pVals.append(Rarepvals[3])
            if Rarepvals[3] > 0.05:
                sRare_MicSlope_Coeffs.append(Rareparams[3])
            else:
                sRare_MicSlope_Coeffs.append(Rareparams[3])

            sRich_MicSlope_pVals.append(Richpvals[3])
            if Richpvals[3] > 0.05:
                sRich_MicSlope_Coeffs.append(Richparams[3])
            else:
                sRich_MicSlope_Coeffs.append(Richparams[3])

            sDom_MicSlope_pVals.append(Dompvals[3])
            if Dompvals[3] > 0.05:
                sDom_MicSlope_Coeffs.append(Domparams[3])
            else:
                sDom_MicSlope_Coeffs.append(Domparams[3])

            sEven_MicSlope_pVals.append(Evenpvals[3])
            if Evenpvals[3] > 0.05:
                sEven_MicSlope_Coeffs.append(Evenparams[3])
            else:
                sEven_MicSlope_Coeffs.append(Evenparams[3])

            sRareR2List.append(Rarer2)
            sRarepFList.append(RareFpval)
            sRichR2List.append(Richr2)
            sRichpFList.append(RichFpval)
            sDomR2List.append(Domr2)
            sDompFList.append(DomFpval)
            sEvenR2List.append(Evenr2)
            sEvenpFList.append(EvenFpval)

            # TESTS OF LINEAR REGRESSION ASSUMPTIONS
            # Error in predictor variables is negligible...Presumably Yes
            # Variables are measured at the continuous level...Definitely Yes

            # TESTS FOR LINEARITY, i.e., WHETHER THE DATA ARE CORRECTLY MODELED AS LINEAR
            #HC = smd.linear_harvey_collier(RarityResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sRarepLinListHC.append(HC)
            #HC = smd.linear_harvey_collier(DomResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sDompLinListHC.append(HC)
            #HC = smd.linear_harvey_collier(EvenResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sEvenpLinListHC.append(HC)

            RB = smd.linear_rainbow(RarityResults) # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sRarepLinListRainB.append(RB[1])
            RB = smd.linear_rainbow(RichnessResults) # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sRichpLinListRainB.append(RB[1])

            RB = smd.linear_rainbow(DomResults) # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sDompLinListRainB.append(RB[1])
            RB = smd.linear_rainbow(EvenResults) # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sEvenpLinListRainB.append(RB[1])

            LM = smd.linear_lm(RarityResults.resid, RarityResults.model.exog) # Lagrangian multiplier test for linearity
            sRarepLinListLM.append(LM[1])
            LM = smd.linear_lm(RichnessResults.resid, RichnessResults.model.exog) # Lagrangian multiplier test for linearity
            sRichpLinListLM.append(LM[1])

            LM = smd.linear_lm(DomResults.resid, DomResults.model.exog) # Lagrangian multiplier test for linearity
            sDompLinListLM.append(LM[1])
            LM = smd.linear_lm(EvenResults.resid, EvenResults.model.exog) # Lagrangian multiplier test for linearity
            sEvenpLinListLM.append(LM[1])

            # INDEPENDENCE OF OBSERVATIONS (no serial correlation in residuals)
            BGtest = smd.acorr_breush_godfrey(RarityResults, nlags=None, store=False) # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
                                # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(RareResids, lags=None, boxpierce=True)
            sRarepCorrListBG.append(BGtest[1])
            sRarepCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(RichnessResults, nlags=None, store=False) # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
                                # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(RichResids, lags=None, boxpierce=True)
            sRichpCorrListBG.append(BGtest[1])
            sRichpCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(DomResults, nlags=None, store=False) # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
                                # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(DomResids, lags=None, boxpierce=True)
            sDompCorrListBG.append(BGtest[1])
            sDompCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(EvenResults, nlags=None, store=False) # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
                                # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(EvenResids, lags=None, boxpierce=True)
            sEvenpCorrListBG.append(BGtest[1])
            sEvenpCorrListF.append(BGtest[3])

            # There are no significant outliers...Need tests or measures/metrics

            # HOMOSCEDASTICITY

            # These tests return:
            # 1. lagrange multiplier statistic,
            # 2. p-value of lagrange multiplier test,
            # 3. f-statistic of the hypothesis that the error variance does not depend on x,
            # 4. p-value for the f-statistic

            HW = sms.het_white(RareResids, RarityResults.model.exog)
            sRarepHomoHW.append(HW[3])
            HW = sms.het_white(RichResids, RichnessResults.model.exog)
            sRichpHomoHW.append(HW[3])

            HW = sms.het_white(DomResids, DomResults.model.exog)
            sDompHomoHW.append(HW[3])
            HW = sms.het_white(EvenResids, EvenResults.model.exog)
            sEvenpHomoHW.append(HW[3])

            HB = sms.het_breushpagan(RareResids, RarityResults.model.exog)
            sRarepHomoHB.append(HB[3])
            HB = sms.het_breushpagan(RichResids, RichnessResults.model.exog)
            sRichpHomoHB.append(HB[3])

            HB = sms.het_breushpagan(DomResids, DomResults.model.exog)
            sDompHomoHB.append(HB[3])
            HB = sms.het_breushpagan(EvenResids, EvenResults.model.exog)
            sEvenpHomoHB.append(HB[3])

            # 7. NORMALITY OF ERROR TERMS
            O = sms.omni_normtest(RareResids)
            sRarepNormListOmni.append(O[1])
            O = sms.omni_normtest(RichResids)
            sRichpNormListOmni.append(O[1])
            O = sms.omni_normtest(DomResids)
            sDompNormListOmni.append(O[1])
            O = sms.omni_normtest(EvenResids)
            sEvenpNormListOmni.append(O[1])

            JB = sms.jarque_bera(RareResids)
            sRarepNormListJB.append(JB[1]) # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(RichResids)
            sRichpNormListJB.append(JB[1]) # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(DomResids)
            sDompNormListJB.append(JB[1]) # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(EvenResids)
            sEvenpNormListJB.append(JB[1]) # Calculate residual skewness, kurtosis, and do the JB test for normality

            KS = smd.kstest_normal(RareResids)
            sRarepNormListKS.append(KS[1]) # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(RichResids)
            sRichpNormListKS.append(KS[1]) # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(DomResids)
            sDompNormListKS.append(KS[1]) # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(EvenResids)
            sEvenpNormListKS.append(KS[1]) # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance

            AD = smd.normal_ad(RareResids)
            sRarepNormListAD.append(AD[1]) # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(RichResids)
            sRichpNormListAD.append(AD[1]) # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(DomResids)
            sDompNormListAD.append(AD[1]) # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(EvenResids)
            sEvenpNormListAD.append(AD[1]) # Anderson-Darling test for normal distribution unknown mean and variance

            print 'Sample size:',SampSize, 'iteration:',iteration

        NLIST.append(SampSize)

        Rare_MacIntercept_pVals.append(np.mean(sRare_MacIntercept_pVals)) # List to hold coefficient p-values
        Rare_MacIntercept_Coeffs.append(np.mean(sRare_MacIntercept_Coeffs)) # List to hold coefficients

        Rich_MacIntercept_pVals.append(np.mean(sRich_MacIntercept_pVals)) # List to hold coefficient p-values
        Rich_MacIntercept_Coeffs.append(np.mean(sRich_MacIntercept_Coeffs)) # List to hold coefficients

        Dom_MacIntercept_pVals.append(np.mean(sDom_MacIntercept_pVals))
        Dom_MacIntercept_Coeffs.append(np.mean(sDom_MacIntercept_Coeffs))

        Even_MacIntercept_pVals.append(np.mean(sEven_MacIntercept_pVals))
        Even_MacIntercept_Coeffs.append(np.mean(sEven_MacIntercept_Coeffs))

        Rare_MicIntercept_pVals.append(np.mean(sRare_MicIntercept_pVals))
        Rare_MicIntercept_Coeffs.append(np.mean(sRare_MicIntercept_Coeffs))

        Rich_MicIntercept_pVals.append(np.mean(sRich_MicIntercept_pVals))
        Rich_MicIntercept_Coeffs.append(np.mean(sRich_MicIntercept_Coeffs))

        Dom_MicIntercept_pVals.append(np.mean(sDom_MicIntercept_pVals))
        Dom_MicIntercept_Coeffs.append(np.mean(sDom_MicIntercept_Coeffs))

        Even_MicIntercept_pVals.append(np.mean(sEven_MicIntercept_pVals))
        Even_MicIntercept_Coeffs.append(np.mean(sEven_MicIntercept_Coeffs))

        Rare_MacSlope_pVals.append(np.mean(sRare_MacSlope_pVals)) # List to hold coefficient p-values
        Rare_MacSlope_Coeffs.append(np.mean(sRare_MacSlope_Coeffs)) # List to hold coefficients

        Rich_MacSlope_pVals.append(np.mean(sRich_MacSlope_pVals)) # List to hold coefficient p-values
        Rich_MacSlope_Coeffs.append(np.mean(sRich_MacSlope_Coeffs)) # List to hold coefficients

        Dom_MacSlope_pVals.append(np.mean(sDom_MacSlope_pVals))
        Dom_MacSlope_Coeffs.append(np.mean(sDom_MacSlope_Coeffs))

        Even_MacSlope_pVals.append(np.mean(sEven_MacSlope_pVals))
        Even_MacSlope_Coeffs.append(np.mean(sEven_MacSlope_Coeffs))

        Rare_MicSlope_pVals.append(np.mean(sRare_MicSlope_pVals))
        Rare_MicSlope_Coeffs.append(np.mean(sRare_MicSlope_Coeffs))

        Rich_MicSlope_pVals.append(np.mean(sRich_MicSlope_pVals))
        Rich_MicSlope_Coeffs.append(np.mean(sRich_MicSlope_Coeffs))

        Dom_MicSlope_pVals.append(np.mean(sDom_MicSlope_pVals))
        Dom_MicSlope_Coeffs.append(np.mean(sDom_MicSlope_Coeffs))

        Even_MicSlope_pVals.append(np.mean(sEven_MicSlope_pVals))
        Even_MicSlope_Coeffs.append(np.mean(sEven_MicSlope_Coeffs))


        RareR2List.append(np.mean(sRareR2List))
        RarepFList.append(np.mean(sRarepFList))
        RichR2List.append(np.mean(sRichR2List))
        RichpFList.append(np.mean(sRichpFList))
        DomR2List.append(np.mean(sDomR2List))
        DompFList.append(np.mean(sDompFList))
        EvenR2List.append(np.mean(sEvenR2List))
        EvenpFList.append(np.mean(sEvenpFList))

        # ASSUMPTIONS OF LINEAR REGRESSION
        # 1. Error in predictor variables is negligible...presumably yes
        # 2. Variables are measured at the continuous level...yes

        # 3. The relationship is linear
        #RarepLinListHC.append(np.mean(sRarepLinListHC))
        RarepLinListRainB.append(np.mean(sRarepLinListRainB))
        RarepLinListLM.append(np.mean(sRarepLinListLM))
        #RichpLinListHC.append(np.mean(sRichpLinListHC))
        RichpLinListRainB.append(np.mean(sRichpLinListRainB))
        RichpLinListLM.append(np.mean(sRichpLinListLM))
        #DompLinListHC.append(np.mean(sDompLinListHC))
        DompLinListRainB.append(np.mean(sDompLinListRainB))
        DompLinListLM.append(np.mean(sDompLinListLM))
        #EvenpLinListHC.append(np.mean(sEvenpLinListHC))
        EvenpLinListRainB.append(np.mean(sEvenpLinListRainB))
        EvenpLinListLM.append(np.mean(sEvenpLinListLM))

        # 4. There are no significant outliers...need to find tests or measures

        # 5. Independence of observations (no serial correlation in residuals)
        RarepCorrListBG.append(np.mean(sRarepCorrListBG))
        RarepCorrListF.append(np.mean(sRarepCorrListF))
        RichpCorrListBG.append(np.mean(sRichpCorrListBG))
        RichpCorrListF.append(np.mean(sRichpCorrListF))
        DompCorrListBG.append(np.mean(sDompCorrListBG))
        DompCorrListF.append(np.mean(sDompCorrListF))
        EvenpCorrListBG.append(np.mean(sEvenpCorrListBG))
        EvenpCorrListF.append(np.mean(sEvenpCorrListF))

        # 6. Homoscedacticity
        RarepHomoHW.append(np.mean(sRarepHomoHW))
        RarepHomoHB.append(np.mean(sRarepHomoHB))
        RichpHomoHB.append(np.mean(sRichpHomoHB))
        RichpHomoHW.append(np.mean(sRichpHomoHW))
        DompHomoHW.append(np.mean(sDompHomoHW))
        DompHomoHB.append(np.mean(sDompHomoHB))
        EvenpHomoHW.append(np.mean(sEvenpHomoHW))
        EvenpHomoHB.append(np.mean(sEvenpHomoHB))

        # 7. Normally distributed residuals (errors)
        RarepNormListOmni.append(np.mean(sRarepNormListOmni))
        RarepNormListJB.append(np.mean(sRarepNormListJB))
        RarepNormListKS.append(np.mean(sRarepNormListKS))
        RarepNormListAD.append(np.mean(sRarepNormListAD))

        RichpNormListOmni.append(np.mean(sRichpNormListOmni))
        RichpNormListJB.append(np.mean(sRichpNormListJB))
        RichpNormListKS.append(np.mean(sRichpNormListKS))
        RichpNormListAD.append(np.mean(sRichpNormListAD))

        DompNormListOmni.append(np.mean(sDompNormListOmni))
        DompNormListJB.append(np.mean(sDompNormListJB))
        DompNormListKS.append(np.mean(sDompNormListKS))
        DompNormListAD.append(np.mean(sDompNormListAD))

        EvenpNormListOmni.append(np.mean(sEvenpNormListOmni))
        EvenpNormListJB.append(np.mean(sEvenpNormListJB))
        EvenpNormListKS.append(np.mean(sEvenpNormListKS))
        EvenpNormListAD.append(np.mean(sEvenpNormListAD))


    fig.add_subplot(4, 3, 1)
    plt.xlim(min(SampSizes)-1,max(SampSizes)+10)
    plt.ylim(0,1)
    plt.xscale('log')
    # Rarity    R2 vs. Sample Size
    plt.plot(NLIST,RareR2List,  c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.text(1.01, 0.6, 'Rarity', rotation='vertical', fontsize=16)
    leg = plt.legend(loc=4,prop={'size':14})
    leg.draw_frame(False)


    fig.add_subplot(4, 3, 2)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.xscale('log')
    plt.ylim(0.0, 0.16)
    # Rarity    Coeffs vs. Sample Size
    plt.plot(NLIST, Rare_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Rare_MacSlope_Coeffs,  c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, RareIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    leg = plt.legend(loc=10,prop={'size':8})
    leg.draw_frame(False)


    fig.add_subplot(4, 3, 3)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.ylim(0.0, 0.6)
    plt.xscale('log')
    # Rarity    p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(RarepLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST,RarepLinListRainB,  c='m')
    plt.plot(NLIST,RarepLinListLM,  c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST,RarepCorrListBG,  c='c')
    plt.plot(NLIST,RarepCorrListF,  c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST,RarepHomoHW,  c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST,RarepHomoHB,  c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST,RarepNormListOmni,  c='Lime', ls='-', label='normality')
    #plt.plot(NLIST,RarepNormListJB,  c='Lime', ls='-')
    #plt.plot(NLIST,RarepNormListKS,  c='Lime', ls='--', lw=3)
    #plt.plot(NLIST,RarepNormListAD,  c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')

    leg = plt.legend(loc=1,prop={'size':8})
    leg.draw_frame(False)


    fig.add_subplot(4, 3, 4)
    plt.xscale('log')
    plt.ylim(0,1)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Dominance     R2 vs. Sample Size
    plt.plot(NLIST, DomR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.text(1.01, 0.82, 'Dominance', rotation='vertical', fontsize=16)

    leg = plt.legend(loc=4,prop={'size':14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 5)
    plt.ylim(-0.2, 1.2)
    plt.xscale('log')
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Dominance     Coeffs vs. Sample Size
    plt.plot(NLIST, Dom_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Dom_MacSlope_Coeffs,  c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, DomIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')

    leg = plt.legend(loc=10,prop={'size':8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 6)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.xscale('log')
    #plt.yscale('log')
    plt.ylim(0, 0.6)
    # Dominance     p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(DompLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST, DompLinListRainB, c='m')
    plt.plot(NLIST, DompLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST, DompCorrListBG, c='c')
    plt.plot(NLIST, DompCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, DompHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST, DompHomoHB, c='r',ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, DompNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST, DompNormListJB, c='Lime', ls='-')
    #plt.plot(NLIST, DompNormListKS, c='Lime', ls='--', lw=3)
    #plt.plot(NLIST, DompNormListAD, c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    leg = plt.legend(loc=1,prop={'size':8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 7)
    plt.text(1.01, 0.7, 'Evenness', rotation='vertical', fontsize=16)
    plt.xscale('log')
    plt.ylim(0,1)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Evenness      R2 vs. Sample Size
    plt.plot(NLIST, EvenR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    leg = plt.legend(loc=4,prop={'size':14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 8)
    plt.ylim(-0.25, 0.0)
    plt.xscale('log')
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Evenness      Coeffs vs. Sample Size
    plt.plot(NLIST, Even_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Even_MacSlope_Coeffs,  c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, EvenIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    leg = plt.legend(loc=10,prop={'size':8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 9)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.xscale('log')
    plt.ylim(0.0, 0.3)
    # Evenness      p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(EvenpLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST, EvenpLinListRainB, c='m')
    plt.plot(NLIST, EvenpLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST, EvenpCorrListBG, c='c')
    plt.plot(NLIST, EvenpCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, EvenpHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST, EvenpHomoHB, c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, EvenpNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST, EvenpNormListJB, c='Lime', alpha=0.9, ls='-')
    #plt.plot(NLIST, EvenpNormListKS, c='Lime', alpha=0.9, ls='--', lw=3)
    #plt.plot(NLIST, EvenpNormListAD, c='Lime', alpha=0.9, ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    leg = plt.legend(loc=1,prop={'size':8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 10)
    plt.xscale('log')
    plt.ylim(0,1)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Dominance     R2 vs. Sample Size
    plt.plot(NLIST, RichR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.xlabel('Sample size', fontsize=14)
    plt.text(1.01, 0.82, 'Richness', rotation='vertical', fontsize=16)

    leg = plt.legend(loc=4,prop={'size':14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 11)
    plt.ylim(-0.2, 1.2)
    plt.xscale('log')
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Richness    Coeffs vs. Sample Size
    plt.plot(NLIST, Rich_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Rich_MacSlope_Coeffs,  c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, RichIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    plt.xlabel('Sample size', fontsize=14)

    leg = plt.legend(loc=10,prop={'size':8})
    leg.draw_frame(False)


    fig.add_subplot(4, 3, 12)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.xscale('log')
    # Richness    p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(RichpLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST,RichpLinListRainB,  c='m')
    plt.plot(NLIST,RichpLinListLM,  c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST,RichpCorrListBG,  c='c')
    plt.plot(NLIST, EvenpCorrListF,  c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST,RichpHomoHW,  c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST,RichpHomoHB,  c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST,RichpNormListOmni,  c='Lime', ls='-', label='normality')
    #plt.plot(NLIST,RichpNormListJB,  c='Lime', ls='-')
    #plt.plot(NLIST,RichpNormListKS,  c='Lime', ls='--', lw=3)
    #plt.plot(NLIST,RichpNormListAD,  c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    plt.xlabel('Sample size', fontsize=14)
    leg = plt.legend(loc=1,prop={'size':8})
    leg.draw_frame(False)
    #plt.tick_params(axis='both', which='major', labelsize=fs-3)
    plt.subplots_adjust(wspace=0.4, hspace=0.4)
    plt.savefig(mydir+'figs/appendix/SampleSize/SampleSizeEffects.png', dpi=600, bbox_inches = "tight")
    #plt.close()
    #plt.show()

    return
Ejemplo n.º 11
0
def Breush_Pagan(X,y):
    ols_retults=ols(X,y)
    name = ['LM statistic', 'p-value of LM test', 
            'f-statistic of the hypothesis', 'f p-value']
    test = sms.het_breushpagan(ols_retults.resid, ols_retults.model.exog)
    return lzip(name, test)
def Fig_OLS_Checks():

    #fs = 10 # font size used across figures
    #color = str()
    #OrC = 'open'

    SampSizes = [
        5, 6, 7, 8, 9, 10, 13, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100
    ]
    Iterations = 100

    fig = plt.figure(figsize=(12, 8))

    # MODEL PARAMETERS
    Rare_MacIntercept_pVals = []  # List to hold coefficient p-values
    Rare_MacIntercept_Coeffs = []  # List to hold coefficients

    Rich_MacIntercept_pVals = []
    Rich_MacIntercept_Coeffs = []

    Dom_MacIntercept_pVals = []
    Dom_MacIntercept_Coeffs = []

    Even_MacIntercept_pVals = []
    Even_MacIntercept_Coeffs = []

    Rare_MicIntercept_pVals = []
    Rare_MicIntercept_Coeffs = []

    Rich_MicIntercept_pVals = []
    Rich_MicIntercept_Coeffs = []

    Dom_MicIntercept_pVals = []
    Dom_MicIntercept_Coeffs = []

    Even_MicIntercept_pVals = []
    Even_MicIntercept_Coeffs = []

    Rare_MacSlope_pVals = []
    Rare_MacSlope_Coeffs = []

    Rich_MacSlope_pVals = []
    Rich_MacSlope_Coeffs = []

    Dom_MacSlope_pVals = []
    Dom_MacSlope_Coeffs = []

    Even_MacSlope_pVals = []
    Even_MacSlope_Coeffs = []

    Rare_MicSlope_pVals = []
    Rare_MicSlope_Coeffs = []

    Rich_MicSlope_pVals = []
    Rich_MicSlope_Coeffs = []

    Dom_MicSlope_pVals = []
    Dom_MicSlope_Coeffs = []

    Even_MicSlope_pVals = []
    Even_MicSlope_Coeffs = []

    RareR2List = []  # List to hold model R2
    RarepFList = []  # List to hold significance of model R2
    RichR2List = []  # List to hold model R2
    RichpFList = []  # List to hold significance of model R2
    DomR2List = []  # List to hold model R2
    DompFList = []  # List to hold significance of model R2
    EvenR2List = []  # List to hold model R2
    EvenpFList = []  # List to hold significance of model R2

    # ASSUMPTIONS OF LINEAR REGRESSION
    # 1. Error in predictor variables is negligible...presumably yes
    # 2. Variables are measured at the continuous level...yes

    # 3. The relationship is linear
    #RarepLinListHC = []
    RarepLinListRainB = []
    RarepLinListLM = []
    #RichpLinListHC = []
    RichpLinListRainB = []
    RichpLinListLM = []
    #DompLinListHC = []
    DompLinListRainB = []
    DompLinListLM = []
    #EvenpLinListHC = []
    EvenpLinListRainB = []
    EvenpLinListLM = []

    # 4. There are no significant outliers...need to find tests or measures

    # 5. Independence of observations (no serial correlation in residuals)
    RarepCorrListBG = []
    RarepCorrListF = []
    RichpCorrListBG = []
    RichpCorrListF = []
    DompCorrListBG = []
    DompCorrListF = []
    EvenpCorrListBG = []
    EvenpCorrListF = []

    # 6. Homoscedacticity
    RarepHomoHW = []
    RarepHomoHB = []
    RichpHomoHW = []
    RichpHomoHB = []
    DompHomoHW = []
    DompHomoHB = []
    EvenpHomoHW = []
    EvenpHomoHB = []

    # 7. Normally distributed residuals (errors)
    RarepNormListOmni = []  # Omnibus test for normality
    RarepNormListJB = [
    ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
    RarepNormListKS = [
    ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    RarepNormListAD = [
    ]  # Anderson-Darling test for normal distribution unknown mean and variance

    RichpNormListOmni = []  # Omnibus test for normality
    RichpNormListJB = [
    ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
    RichpNormListKS = [
    ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    RichpNormListAD = [
    ]  # Anderson-Darling test for normal distribution unknown mean and variance

    DompNormListOmni = []  # Omnibus test for normality
    DompNormListJB = [
    ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
    DompNormListKS = [
    ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    DompNormListAD = [
    ]  # Anderson-Darling test for normal distribution unknown mean and variance

    EvenpNormListOmni = []  # Omnibus test for normality
    EvenpNormListJB = [
    ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
    EvenpNormListKS = [
    ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    EvenpNormListAD = [
    ]  # Anderson-Darling test for normal distribution unknown mean and variance

    NLIST = []

    for SampSize in SampSizes:

        sRare_MacIntercept_pVals = []  # List to hold coefficient p-values
        sRare_MacIntercept_Coeffs = []  # List to hold coefficients

        sRich_MacIntercept_pVals = []  # List to hold coefficient p-values
        sRich_MacIntercept_Coeffs = []  # List to hold coefficients

        sDom_MacIntercept_pVals = []
        sDom_MacIntercept_Coeffs = []

        sEven_MacIntercept_pVals = []
        sEven_MacIntercept_Coeffs = []

        sRare_MicIntercept_pVals = []
        sRare_MicIntercept_Coeffs = []

        sRich_MicIntercept_pVals = []
        sRich_MicIntercept_Coeffs = []

        sDom_MicIntercept_pVals = []
        sDom_MicIntercept_Coeffs = []

        sEven_MicIntercept_pVals = []
        sEven_MicIntercept_Coeffs = []

        sRare_MacSlope_pVals = []
        sRare_MacSlope_Coeffs = []

        sRich_MacSlope_pVals = []
        sRich_MacSlope_Coeffs = []

        sDom_MacSlope_pVals = []
        sDom_MacSlope_Coeffs = []

        sEven_MacSlope_pVals = []
        sEven_MacSlope_Coeffs = []

        sRare_MicSlope_pVals = []
        sRare_MicSlope_Coeffs = []

        sRich_MicSlope_pVals = []
        sRich_MicSlope_Coeffs = []

        sDom_MicSlope_pVals = []
        sDom_MicSlope_Coeffs = []

        sEven_MicSlope_pVals = []
        sEven_MicSlope_Coeffs = []

        sRareR2List = []  # List to hold model R2
        sRarepFList = []  # List to hold significance of model R2
        sRichR2List = []  # List to hold model R2
        sRichpFList = []  # List to hold significance of model R2
        sDomR2List = []  # List to hold model R2
        sDompFList = []  # List to hold significance of model R2
        sEvenR2List = []  # List to hold model R2
        sEvenpFList = []  # List to hold significance of model R2

        # ASSUMPTIONS OF LINEAR REGRESSION
        # 1. Error in predictor variables is negligible...presumably yes
        # 2. Variables are measured at the continuous level...yes

        # 3. The relationship is linear
        #sRarepLinListHC = []
        sRarepLinListRainB = []
        sRarepLinListLM = []
        #sRichpLinListHC = []
        sRichpLinListRainB = []
        sRichpLinListLM = []
        #sDompLinListHC = []
        sDompLinListRainB = []
        sDompLinListLM = []
        #sEvenpLinListHC = []
        sEvenpLinListRainB = []
        sEvenpLinListLM = []

        # 4. There are no significant outliers...need to find tests or measures

        # 5. Independence of observations (no serial correlation in residuals)
        sRarepCorrListBG = []
        sRarepCorrListF = []
        sRichpCorrListBG = []
        sRichpCorrListF = []
        sDompCorrListBG = []
        sDompCorrListF = []
        sEvenpCorrListBG = []
        sEvenpCorrListF = []

        # 6. Homoscedacticity
        sRarepHomoHW = []
        sRarepHomoHB = []
        sRichpHomoHW = []
        sRichpHomoHB = []
        sDompHomoHW = []
        sDompHomoHB = []
        sEvenpHomoHW = []
        sEvenpHomoHB = []

        # 7. Normally distributed residuals (errors)
        sRarepNormListOmni = []  # Omnibus test for normality
        sRarepNormListJB = [
        ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
        sRarepNormListKS = [
        ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sRarepNormListAD = [
        ]  # Anderson-Darling test for normal distribution unknown mean and variance

        sRichpNormListOmni = []  # Omnibus test for normality
        sRichpNormListJB = [
        ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
        sRichpNormListKS = [
        ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sRichpNormListAD = [
        ]  # Anderson-Darling test for normal distribution unknown mean and variance

        sDompNormListOmni = []  # Omnibus test for normality
        sDompNormListJB = [
        ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
        sDompNormListKS = [
        ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sDompNormListAD = [
        ]  # Anderson-Darling test for normal distribution unknown mean and variance

        sEvenpNormListOmni = []  # Omnibus test for normality
        sEvenpNormListJB = [
        ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
        sEvenpNormListKS = [
        ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sEvenpNormListAD = [
        ]  # Anderson-Darling test for normal distribution unknown mean and variance

        for iteration in range(Iterations):

            Nlist, Slist, Evarlist, ESimplist, ENeelist, EHeiplist, EQlist = [
                [], [], [], [], [], [], []
            ]
            klist, Shanlist, BPlist, SimpDomlist, SinglesList, tenlist, onelist = [
                [], [], [], [], [], [], []
            ]
            NmaxList, rareSkews, KindList = [[], [], []]
            NSlist = []

            ct = 0
            radDATA = []
            datasets = []
            GoodNames = [
                'EMPclosed', 'HMP', 'BIGN', 'TARA', 'BOVINE', 'HUMAN', 'LAUB',
                'SED', 'CHU', 'CHINA', 'CATLIN', 'FUNGI', 'HYDRO', 'BBS',
                'CBC', 'MCDB', 'GENTRY', 'FIA'
            ]  # all microbe data is MGRAST

            mlist = ['micro', 'macro']
            for m in mlist:
                for name in os.listdir(mydir + 'data/' + m):
                    if name in GoodNames: pass
                    else: continue
                    path = mydir + 'data/' + m + '/' + name + '/' + name + '-SADMetricData.txt'
                    num_lines = sum(1 for line in open(path))
                    datasets.append([name, m, num_lines])

            numMac = 0
            numMic = 0

            radDATA = []

            for d in datasets:

                name, kind, numlines = d
                lines = []
                lines = np.random.choice(range(1, numlines + 1),
                                         SampSize,
                                         replace=True)

                path = mydir + 'data/' + kind + '/' + name + '/' + name + '-SADMetricData.txt'

                for line in lines:
                    data = linecache.getline(path, line)
                    radDATA.append(data)

                #print name, kind, numlines, len(radDATA)

            for data in radDATA:

                data = data.split()
                if len(data) == 0:
                    print 'no data'
                    continue

                name, kind, N, S, Var, Evar, ESimp, EQ, O, ENee, EPielou, EHeip, BP, SimpDom, Nmax, McN, skew, logskew, chao1, ace, jknife1, jknife2, margalef, menhinick, preston_a, preston_S = data

                N = float(N)
                S = float(S)

                Nlist.append(float(np.log(N)))
                Slist.append(float(np.log(S)))
                NSlist.append(float(np.log(N / S)))

                Evarlist.append(float(np.log(float(Evar))))
                ESimplist.append(float(np.log(float(ESimp))))
                KindList.append(kind)

                BPlist.append(float(BP))
                NmaxList.append(float(np.log(float(BP) * float(N))))
                EHeiplist.append(float(EHeip))

                # lines for the log-modulo transformation of skewnness
                skew = float(skew)
                sign = 1
                if skew < 0: sign = -1

                lms = np.log(np.abs(skew) + 1)
                lms = lms * sign
                #if lms > 3: print name, N, S
                rareSkews.append(float(lms))

                if kind == 'macro': numMac += 1
                elif kind == 'micro': numMic += 1

                ct += 1

            #print 'Sample Size:',SampSize, ' Mic:', numMic,'Mac:', numMac

            # Multiple regression for Rarity
            d = pd.DataFrame({'N': list(Nlist)})
            d['Rarity'] = list(rareSkews)
            d['Kind'] = list(KindList)

            RarityResults = smf.ols(
                'Rarity ~ N * Kind',
                d).fit()  # Fit the dummy variable regression model
            #print RarityResults.summary(), '\n'

            # Multiple regression for Rarity
            d = pd.DataFrame({'N': list(Nlist)})
            d['Richness'] = list(Slist)
            d['Kind'] = list(KindList)

            RichnessResults = smf.ols(
                'Richness ~ N * Kind',
                d).fit()  # Fit the dummy variable regression model
            #print RichnessResults.summary(), '\n'

            # Multiple regression for Dominance
            d = pd.DataFrame({'N': list(Nlist)})
            d['Dominance'] = list(NmaxList)
            d['Kind'] = list(KindList)

            DomResults = smf.ols(
                'Dominance ~ N * Kind',
                d).fit()  # Fit the dummy variable regression model
            #print DomResults.summary(), '\n'

            # Multiple regression for Evenness
            d = pd.DataFrame({'N': list(Nlist)})
            d['Evenness'] = list(ESimplist)
            d['Kind'] = list(KindList)

            EvenResults = smf.ols(
                'Evenness ~ N * Kind',
                d).fit()  # Fit the dummy variable regression model
            #print RarityResults.summary(), '\n'

            RareResids = RarityResults.resid  # residuals of the model
            RichResids = RichnessResults.resid  # residuals of the model
            DomResids = DomResults.resid  # residuals of the model
            EvenResids = EvenResults.resid  # residuals of the model

            # MODEL RESULTS/FIT
            RareFpval = RarityResults.f_pvalue
            Rarer2 = RarityResults.rsquared  # coefficient of determination
            #Adj_r2 = RareResults.rsquared_adj # adjusted
            RichFpval = RichnessResults.f_pvalue
            Richr2 = RichnessResults.rsquared  # coefficient of determination
            #Adj_r2 = RichnessResults.rsquared_adj # adjusted

            DomFpval = DomResults.f_pvalue
            Domr2 = DomResults.rsquared  # coefficient of determination
            #Adj_r2 = DomResults.rsquared_adj # adjusted
            EvenFpval = EvenResults.f_pvalue
            Evenr2 = EvenResults.rsquared  # coefficient of determination
            #Adj_r2 = EvenResuls.rsquared_adj # adjusted

            # MODEL PARAMETERS and p-values
            Rareparams = RarityResults.params
            Rareparams = Rareparams.tolist()
            Rarepvals = RarityResults.pvalues
            Rarepvals = Rarepvals.tolist()

            Richparams = RichnessResults.params
            Richparams = Richparams.tolist()
            Richpvals = RichnessResults.pvalues
            Richpvals = Richpvals.tolist()

            Domparams = DomResults.params
            Domparams = Domparams.tolist()
            Dompvals = DomResults.pvalues
            Dompvals = Dompvals.tolist()

            Evenparams = EvenResults.params
            Evenparams = Evenparams.tolist()
            Evenpvals = EvenResults.pvalues
            Evenpvals = Evenpvals.tolist()

            sRare_MacIntercept_pVals.append(Rarepvals[0])
            sRare_MacIntercept_Coeffs.append(Rareparams[0])

            sRich_MacIntercept_pVals.append(Rarepvals[0])
            sRich_MacIntercept_Coeffs.append(Rareparams[0])

            sDom_MacIntercept_pVals.append(Dompvals[0])
            sDom_MacIntercept_Coeffs.append(Domparams[0])

            sEven_MacIntercept_pVals.append(Evenpvals[0])
            sEven_MacIntercept_Coeffs.append(Evenparams[0])

            sRare_MicIntercept_pVals.append(Rarepvals[1])
            if Rarepvals[1] > 0.05:
                sRare_MicIntercept_Coeffs.append(Rareparams[1])
            else:
                sRare_MicIntercept_Coeffs.append(Rareparams[1])

            sRich_MicIntercept_pVals.append(Richpvals[1])
            if Richpvals[1] > 0.05:
                sRich_MicIntercept_Coeffs.append(Richparams[1])
            else:
                sRich_MicIntercept_Coeffs.append(Richparams[1])

            sDom_MicIntercept_pVals.append(Dompvals[1])
            if Dompvals[1] > 0.05:
                sDom_MicIntercept_Coeffs.append(Domparams[1])
            else:
                sDom_MicIntercept_Coeffs.append(Domparams[1])

            sEven_MicIntercept_pVals.append(Evenpvals[1])
            if Evenpvals[1] > 0.05:
                sEven_MicIntercept_Coeffs.append(Evenparams[1])
            else:
                sEven_MicIntercept_Coeffs.append(Evenparams[1])

            sRare_MacSlope_pVals.append(Rarepvals[2])
            sRare_MacSlope_Coeffs.append(Rareparams[2])

            sRich_MacSlope_pVals.append(Richpvals[2])
            sRich_MacSlope_Coeffs.append(Richparams[2])

            sDom_MacSlope_pVals.append(Dompvals[2])
            sDom_MacSlope_Coeffs.append(Domparams[2])

            sEven_MacSlope_pVals.append(Evenpvals[2])
            sEven_MacSlope_Coeffs.append(Evenparams[2])

            sRare_MicSlope_pVals.append(Rarepvals[3])
            if Rarepvals[3] > 0.05:
                sRare_MicSlope_Coeffs.append(Rareparams[3])
            else:
                sRare_MicSlope_Coeffs.append(Rareparams[3])

            sRich_MicSlope_pVals.append(Richpvals[3])
            if Richpvals[3] > 0.05:
                sRich_MicSlope_Coeffs.append(Richparams[3])
            else:
                sRich_MicSlope_Coeffs.append(Richparams[3])

            sDom_MicSlope_pVals.append(Dompvals[3])
            if Dompvals[3] > 0.05:
                sDom_MicSlope_Coeffs.append(Domparams[3])
            else:
                sDom_MicSlope_Coeffs.append(Domparams[3])

            sEven_MicSlope_pVals.append(Evenpvals[3])
            if Evenpvals[3] > 0.05:
                sEven_MicSlope_Coeffs.append(Evenparams[3])
            else:
                sEven_MicSlope_Coeffs.append(Evenparams[3])

            sRareR2List.append(Rarer2)
            sRarepFList.append(RareFpval)
            sRichR2List.append(Richr2)
            sRichpFList.append(RichFpval)
            sDomR2List.append(Domr2)
            sDompFList.append(DomFpval)
            sEvenR2List.append(Evenr2)
            sEvenpFList.append(EvenFpval)

            # TESTS OF LINEAR REGRESSION ASSUMPTIONS
            # Error in predictor variables is negligible...Presumably Yes
            # Variables are measured at the continuous level...Definitely Yes

            # TESTS FOR LINEARITY, i.e., WHETHER THE DATA ARE CORRECTLY MODELED AS LINEAR
            #HC = smd.linear_harvey_collier(RarityResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sRarepLinListHC.append(HC)
            #HC = smd.linear_harvey_collier(DomResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sDompLinListHC.append(HC)
            #HC = smd.linear_harvey_collier(EvenResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sEvenpLinListHC.append(HC)

            RB = smd.linear_rainbow(
                RarityResults
            )  # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sRarepLinListRainB.append(RB[1])
            RB = smd.linear_rainbow(
                RichnessResults
            )  # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sRichpLinListRainB.append(RB[1])

            RB = smd.linear_rainbow(
                DomResults
            )  # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sDompLinListRainB.append(RB[1])
            RB = smd.linear_rainbow(
                EvenResults
            )  # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sEvenpLinListRainB.append(RB[1])

            LM = smd.linear_lm(RarityResults.resid, RarityResults.model.exog
                               )  # Lagrangian multiplier test for linearity
            sRarepLinListLM.append(LM[1])
            LM = smd.linear_lm(RichnessResults.resid,
                               RichnessResults.model.exog
                               )  # Lagrangian multiplier test for linearity
            sRichpLinListLM.append(LM[1])

            LM = smd.linear_lm(DomResults.resid, DomResults.model.exog
                               )  # Lagrangian multiplier test for linearity
            sDompLinListLM.append(LM[1])
            LM = smd.linear_lm(EvenResults.resid, EvenResults.model.exog
                               )  # Lagrangian multiplier test for linearity
            sEvenpLinListLM.append(LM[1])

            # INDEPENDENCE OF OBSERVATIONS (no serial correlation in residuals)
            BGtest = smd.acorr_breush_godfrey(
                RarityResults, nlags=None, store=False
            )  # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
            # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(RareResids, lags=None, boxpierce=True)
            sRarepCorrListBG.append(BGtest[1])
            sRarepCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(
                RichnessResults, nlags=None, store=False
            )  # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
            # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(RichResids, lags=None, boxpierce=True)
            sRichpCorrListBG.append(BGtest[1])
            sRichpCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(
                DomResults, nlags=None, store=False
            )  # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
            # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(DomResids, lags=None, boxpierce=True)
            sDompCorrListBG.append(BGtest[1])
            sDompCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(
                EvenResults, nlags=None, store=False
            )  # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
            # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(EvenResids, lags=None, boxpierce=True)
            sEvenpCorrListBG.append(BGtest[1])
            sEvenpCorrListF.append(BGtest[3])

            # There are no significant outliers...Need tests or measures/metrics

            # HOMOSCEDASTICITY

            # These tests return:
            # 1. lagrange multiplier statistic,
            # 2. p-value of lagrange multiplier test,
            # 3. f-statistic of the hypothesis that the error variance does not depend on x,
            # 4. p-value for the f-statistic

            HW = sms.het_white(RareResids, RarityResults.model.exog)
            sRarepHomoHW.append(HW[3])
            HW = sms.het_white(RichResids, RichnessResults.model.exog)
            sRichpHomoHW.append(HW[3])

            HW = sms.het_white(DomResids, DomResults.model.exog)
            sDompHomoHW.append(HW[3])
            HW = sms.het_white(EvenResids, EvenResults.model.exog)
            sEvenpHomoHW.append(HW[3])

            HB = sms.het_breushpagan(RareResids, RarityResults.model.exog)
            sRarepHomoHB.append(HB[3])
            HB = sms.het_breushpagan(RichResids, RichnessResults.model.exog)
            sRichpHomoHB.append(HB[3])

            HB = sms.het_breushpagan(DomResids, DomResults.model.exog)
            sDompHomoHB.append(HB[3])
            HB = sms.het_breushpagan(EvenResids, EvenResults.model.exog)
            sEvenpHomoHB.append(HB[3])

            # 7. NORMALITY OF ERROR TERMS
            O = sms.omni_normtest(RareResids)
            sRarepNormListOmni.append(O[1])
            O = sms.omni_normtest(RichResids)
            sRichpNormListOmni.append(O[1])
            O = sms.omni_normtest(DomResids)
            sDompNormListOmni.append(O[1])
            O = sms.omni_normtest(EvenResids)
            sEvenpNormListOmni.append(O[1])

            JB = sms.jarque_bera(RareResids)
            sRarepNormListJB.append(
                JB[1]
            )  # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(RichResids)
            sRichpNormListJB.append(
                JB[1]
            )  # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(DomResids)
            sDompNormListJB.append(
                JB[1]
            )  # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(EvenResids)
            sEvenpNormListJB.append(
                JB[1]
            )  # Calculate residual skewness, kurtosis, and do the JB test for normality

            KS = smd.kstest_normal(RareResids)
            sRarepNormListKS.append(
                KS[1]
            )  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(RichResids)
            sRichpNormListKS.append(
                KS[1]
            )  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(DomResids)
            sDompNormListKS.append(
                KS[1]
            )  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(EvenResids)
            sEvenpNormListKS.append(
                KS[1]
            )  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance

            AD = smd.normal_ad(RareResids)
            sRarepNormListAD.append(
                AD[1]
            )  # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(RichResids)
            sRichpNormListAD.append(
                AD[1]
            )  # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(DomResids)
            sDompNormListAD.append(
                AD[1]
            )  # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(EvenResids)
            sEvenpNormListAD.append(
                AD[1]
            )  # Anderson-Darling test for normal distribution unknown mean and variance

            print 'Sample size:', SampSize, 'iteration:', iteration

        NLIST.append(SampSize)

        Rare_MacIntercept_pVals.append(np.mean(
            sRare_MacIntercept_pVals))  # List to hold coefficient p-values
        Rare_MacIntercept_Coeffs.append(
            np.mean(sRare_MacIntercept_Coeffs))  # List to hold coefficients

        Rich_MacIntercept_pVals.append(np.mean(
            sRich_MacIntercept_pVals))  # List to hold coefficient p-values
        Rich_MacIntercept_Coeffs.append(
            np.mean(sRich_MacIntercept_Coeffs))  # List to hold coefficients

        Dom_MacIntercept_pVals.append(np.mean(sDom_MacIntercept_pVals))
        Dom_MacIntercept_Coeffs.append(np.mean(sDom_MacIntercept_Coeffs))

        Even_MacIntercept_pVals.append(np.mean(sEven_MacIntercept_pVals))
        Even_MacIntercept_Coeffs.append(np.mean(sEven_MacIntercept_Coeffs))

        Rare_MicIntercept_pVals.append(np.mean(sRare_MicIntercept_pVals))
        Rare_MicIntercept_Coeffs.append(np.mean(sRare_MicIntercept_Coeffs))

        Rich_MicIntercept_pVals.append(np.mean(sRich_MicIntercept_pVals))
        Rich_MicIntercept_Coeffs.append(np.mean(sRich_MicIntercept_Coeffs))

        Dom_MicIntercept_pVals.append(np.mean(sDom_MicIntercept_pVals))
        Dom_MicIntercept_Coeffs.append(np.mean(sDom_MicIntercept_Coeffs))

        Even_MicIntercept_pVals.append(np.mean(sEven_MicIntercept_pVals))
        Even_MicIntercept_Coeffs.append(np.mean(sEven_MicIntercept_Coeffs))

        Rare_MacSlope_pVals.append(
            np.mean(sRare_MacSlope_pVals))  # List to hold coefficient p-values
        Rare_MacSlope_Coeffs.append(
            np.mean(sRare_MacSlope_Coeffs))  # List to hold coefficients

        Rich_MacSlope_pVals.append(
            np.mean(sRich_MacSlope_pVals))  # List to hold coefficient p-values
        Rich_MacSlope_Coeffs.append(
            np.mean(sRich_MacSlope_Coeffs))  # List to hold coefficients

        Dom_MacSlope_pVals.append(np.mean(sDom_MacSlope_pVals))
        Dom_MacSlope_Coeffs.append(np.mean(sDom_MacSlope_Coeffs))

        Even_MacSlope_pVals.append(np.mean(sEven_MacSlope_pVals))
        Even_MacSlope_Coeffs.append(np.mean(sEven_MacSlope_Coeffs))

        Rare_MicSlope_pVals.append(np.mean(sRare_MicSlope_pVals))
        Rare_MicSlope_Coeffs.append(np.mean(sRare_MicSlope_Coeffs))

        Rich_MicSlope_pVals.append(np.mean(sRich_MicSlope_pVals))
        Rich_MicSlope_Coeffs.append(np.mean(sRich_MicSlope_Coeffs))

        Dom_MicSlope_pVals.append(np.mean(sDom_MicSlope_pVals))
        Dom_MicSlope_Coeffs.append(np.mean(sDom_MicSlope_Coeffs))

        Even_MicSlope_pVals.append(np.mean(sEven_MicSlope_pVals))
        Even_MicSlope_Coeffs.append(np.mean(sEven_MicSlope_Coeffs))

        RareR2List.append(np.mean(sRareR2List))
        RarepFList.append(np.mean(sRarepFList))
        RichR2List.append(np.mean(sRichR2List))
        RichpFList.append(np.mean(sRichpFList))
        DomR2List.append(np.mean(sDomR2List))
        DompFList.append(np.mean(sDompFList))
        EvenR2List.append(np.mean(sEvenR2List))
        EvenpFList.append(np.mean(sEvenpFList))

        # ASSUMPTIONS OF LINEAR REGRESSION
        # 1. Error in predictor variables is negligible...presumably yes
        # 2. Variables are measured at the continuous level...yes

        # 3. The relationship is linear
        #RarepLinListHC.append(np.mean(sRarepLinListHC))
        RarepLinListRainB.append(np.mean(sRarepLinListRainB))
        RarepLinListLM.append(np.mean(sRarepLinListLM))
        #RichpLinListHC.append(np.mean(sRichpLinListHC))
        RichpLinListRainB.append(np.mean(sRichpLinListRainB))
        RichpLinListLM.append(np.mean(sRichpLinListLM))
        #DompLinListHC.append(np.mean(sDompLinListHC))
        DompLinListRainB.append(np.mean(sDompLinListRainB))
        DompLinListLM.append(np.mean(sDompLinListLM))
        #EvenpLinListHC.append(np.mean(sEvenpLinListHC))
        EvenpLinListRainB.append(np.mean(sEvenpLinListRainB))
        EvenpLinListLM.append(np.mean(sEvenpLinListLM))

        # 4. There are no significant outliers...need to find tests or measures

        # 5. Independence of observations (no serial correlation in residuals)
        RarepCorrListBG.append(np.mean(sRarepCorrListBG))
        RarepCorrListF.append(np.mean(sRarepCorrListF))
        RichpCorrListBG.append(np.mean(sRichpCorrListBG))
        RichpCorrListF.append(np.mean(sRichpCorrListF))
        DompCorrListBG.append(np.mean(sDompCorrListBG))
        DompCorrListF.append(np.mean(sDompCorrListF))
        EvenpCorrListBG.append(np.mean(sEvenpCorrListBG))
        EvenpCorrListF.append(np.mean(sEvenpCorrListF))

        # 6. Homoscedacticity
        RarepHomoHW.append(np.mean(sRarepHomoHW))
        RarepHomoHB.append(np.mean(sRarepHomoHB))
        RichpHomoHB.append(np.mean(sRichpHomoHB))
        RichpHomoHW.append(np.mean(sRichpHomoHW))
        DompHomoHW.append(np.mean(sDompHomoHW))
        DompHomoHB.append(np.mean(sDompHomoHB))
        EvenpHomoHW.append(np.mean(sEvenpHomoHW))
        EvenpHomoHB.append(np.mean(sEvenpHomoHB))

        # 7. Normally distributed residuals (errors)
        RarepNormListOmni.append(np.mean(sRarepNormListOmni))
        RarepNormListJB.append(np.mean(sRarepNormListJB))
        RarepNormListKS.append(np.mean(sRarepNormListKS))
        RarepNormListAD.append(np.mean(sRarepNormListAD))

        RichpNormListOmni.append(np.mean(sRichpNormListOmni))
        RichpNormListJB.append(np.mean(sRichpNormListJB))
        RichpNormListKS.append(np.mean(sRichpNormListKS))
        RichpNormListAD.append(np.mean(sRichpNormListAD))

        DompNormListOmni.append(np.mean(sDompNormListOmni))
        DompNormListJB.append(np.mean(sDompNormListJB))
        DompNormListKS.append(np.mean(sDompNormListKS))
        DompNormListAD.append(np.mean(sDompNormListAD))

        EvenpNormListOmni.append(np.mean(sEvenpNormListOmni))
        EvenpNormListJB.append(np.mean(sEvenpNormListJB))
        EvenpNormListKS.append(np.mean(sEvenpNormListKS))
        EvenpNormListAD.append(np.mean(sEvenpNormListAD))

    fig.add_subplot(4, 3, 1)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.ylim(0, 1)
    plt.xscale('log')
    # Rarity    R2 vs. Sample Size
    plt.plot(NLIST, RareR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.text(1.01, 0.6, 'Rarity', rotation='vertical', fontsize=16)
    leg = plt.legend(loc=4, prop={'size': 14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 2)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.xscale('log')
    plt.ylim(0.0, 0.16)
    # Rarity    Coeffs vs. Sample Size
    plt.plot(NLIST, Rare_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Rare_MacSlope_Coeffs, c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, RareIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    leg = plt.legend(loc=10, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 3)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.ylim(0.0, 0.6)
    plt.xscale('log')
    # Rarity    p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(RarepLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST,RarepLinListRainB,  c='m')
    plt.plot(NLIST, RarepLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST,RarepCorrListBG,  c='c')
    plt.plot(NLIST, RarepCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, RarepHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST,RarepHomoHB,  c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, RarepNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST,RarepNormListJB,  c='Lime', ls='-')
    #plt.plot(NLIST,RarepNormListKS,  c='Lime', ls='--', lw=3)
    #plt.plot(NLIST,RarepNormListAD,  c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')

    leg = plt.legend(loc=1, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 4)
    plt.xscale('log')
    plt.ylim(0, 1)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Dominance     R2 vs. Sample Size
    plt.plot(NLIST, DomR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.text(1.01, 0.82, 'Dominance', rotation='vertical', fontsize=16)

    leg = plt.legend(loc=4, prop={'size': 14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 5)
    plt.ylim(-0.2, 1.2)
    plt.xscale('log')
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Dominance     Coeffs vs. Sample Size
    plt.plot(NLIST, Dom_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Dom_MacSlope_Coeffs, c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, DomIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')

    leg = plt.legend(loc=10, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 6)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.xscale('log')
    #plt.yscale('log')
    plt.ylim(0, 0.6)
    # Dominance     p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(DompLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST, DompLinListRainB, c='m')
    plt.plot(NLIST, DompLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST, DompCorrListBG, c='c')
    plt.plot(NLIST, DompCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, DompHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST, DompHomoHB, c='r',ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, DompNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST, DompNormListJB, c='Lime', ls='-')
    #plt.plot(NLIST, DompNormListKS, c='Lime', ls='--', lw=3)
    #plt.plot(NLIST, DompNormListAD, c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    leg = plt.legend(loc=1, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 7)
    plt.text(1.01, 0.7, 'Evenness', rotation='vertical', fontsize=16)
    plt.xscale('log')
    plt.ylim(0, 1)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Evenness      R2 vs. Sample Size
    plt.plot(NLIST, EvenR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    leg = plt.legend(loc=4, prop={'size': 14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 8)
    plt.ylim(-0.25, 0.0)
    plt.xscale('log')
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Evenness      Coeffs vs. Sample Size
    plt.plot(NLIST, Even_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Even_MacSlope_Coeffs, c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, EvenIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    leg = plt.legend(loc=10, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 9)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.xscale('log')
    plt.ylim(0.0, 0.3)
    # Evenness      p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(EvenpLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST, EvenpLinListRainB, c='m')
    plt.plot(NLIST, EvenpLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST, EvenpCorrListBG, c='c')
    plt.plot(NLIST, EvenpCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, EvenpHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST, EvenpHomoHB, c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, EvenpNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST, EvenpNormListJB, c='Lime', alpha=0.9, ls='-')
    #plt.plot(NLIST, EvenpNormListKS, c='Lime', alpha=0.9, ls='--', lw=3)
    #plt.plot(NLIST, EvenpNormListAD, c='Lime', alpha=0.9, ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    leg = plt.legend(loc=1, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 10)
    plt.xscale('log')
    plt.ylim(0, 1)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Dominance     R2 vs. Sample Size
    plt.plot(NLIST, RichR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.xlabel('Sample size', fontsize=14)
    plt.text(1.01, 0.82, 'Richness', rotation='vertical', fontsize=16)

    leg = plt.legend(loc=4, prop={'size': 14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 11)
    plt.ylim(-0.2, 1.2)
    plt.xscale('log')
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Richness    Coeffs vs. Sample Size
    plt.plot(NLIST, Rich_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Rich_MacSlope_Coeffs, c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, RichIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    plt.xlabel('Sample size', fontsize=14)

    leg = plt.legend(loc=10, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 12)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.xscale('log')
    # Richness    p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(RichpLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST,RichpLinListRainB,  c='m')
    plt.plot(NLIST, RichpLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST,RichpCorrListBG,  c='c')
    plt.plot(NLIST, EvenpCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, RichpHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST,RichpHomoHB,  c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, RichpNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST,RichpNormListJB,  c='Lime', ls='-')
    #plt.plot(NLIST,RichpNormListKS,  c='Lime', ls='--', lw=3)
    #plt.plot(NLIST,RichpNormListAD,  c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    plt.xlabel('Sample size', fontsize=14)
    leg = plt.legend(loc=1, prop={'size': 8})
    leg.draw_frame(False)
    #plt.tick_params(axis='both', which='major', labelsize=fs-3)
    plt.subplots_adjust(wspace=0.4, hspace=0.4)
    plt.savefig(mydir + 'figs/appendix/SampleSize/SampleSizeEffects.png',
                dpi=600,
                bbox_inches="tight")
    #plt.close()
    #plt.show()

    return
Ejemplo n.º 13
0
def do_regression(data_frame, response_var, predicators):
    Y = np.array(data_frame[response_var])
    X = np.array(data_frame[predicators])
    X = sm.add_constant(X)
    linear_model = sm.OLS(Y,X)
    lr = linear_model.fit()

    ## make a plot
    fnou = response_var+"_vs_"+"("+("+".join(predicators))+")"+".pdf"
    pp = PdfPages(fnou)
    if(len(predicators) == 1):
        ## plot the data points
        plt.clf()
        plt.scatter(X[:,1], Y[:], s=0.5, c='b')
        ## plot the fitting line
        x1 = np.arange(min(X[:,1]), max(X[:,1]), (max(X[:,1])-min(X[:,1]))*0.01 )
        y1 = x1 * lr.params[1] + lr.params[0]
        plt.plot(x1,y1,'b--')
        plt.xlabel(predicators[0])
        plt.ylabel(response_var)
        plt.title(response_var+"_vs_"+predicators[0])
        
        pp.savefig(bbox_inches='tight', papertype='a4')
    
        
        ## plot the residule-x
        plt.clf()
        plt.scatter(X[:,1], lr.resid, s = 5.0, c='b', alpha=0.4, linewidth=0.0)
        plt.xlabel(predicators[0])
        plt.ylabel("Residual")
        pp.savefig(bbox_inches='tight', papertype='a4')

        ## plot residual square-x
        plt.clf()
        plt.scatter(X[:,1], lr.resid**2, s = 5.0, c='b', alpha=0.4, linewidth=0.0)
        plt.xlabel(predicators[0])
        plt.ylabel("Residual Square")
        pp.savefig(bbox_inches='tight', papertype='a4')
        
    y_pred = lr.predict(X)
    
    ## plot the residule-y-pred
    plt.clf()
    plt.scatter(y_pred, lr.resid, s = 5.0, c='r', alpha=0.4, linewidth=0.0)
    plt.xlabel(response_var)
    plt.ylabel("Residual")
    pp.savefig(bbox_inches='tight', papertype='a4')

    ## plot residual square-y-pred
    plt.clf()
    plt.scatter(y_pred, lr.resid**2, s = 5.0, c='r', alpha=0.4, linewidth=0.0)
    plt.xlabel(response_var)
    plt.ylabel("Residual Square")
    pp.savefig(bbox_inches='tight', papertype='a4')

    ## plot observed-predicted
    plt.clf()
    plt.scatter(y_pred, Y, s = 5.0, c='g', alpha=0.4, linewidth=0.0)
    y1 = np.arange(min(Y),max(Y),(max(Y)-min(Y))*0.01)
    plt.plot(y1,y1,'b--')
    plt.xlabel("Predicted")
    plt.ylabel("Observed")
    #plt.title("Aggregated Regression")
    plt.axis('equal')
    pp.savefig(bbox_inches='tight', papertype='a4')
    

    ## make a histogram of residual
    plt.clf()
    plt.hist(lr.resid, bins=40)
    plt.title("Regression Residual Distribution")
    res_hist = np.histogram(lr.resid,bins=40)
    bin_w = res_hist[1][1] - res_hist[1][0]

    res_mean = np.mean(lr.resid)
    res_std = np.std(lr.resid)
    x1 = np.arange(min(lr.resid), max(lr.resid), (max(lr.resid)-min(lr.resid))*0.01 )
    y1 = norm.pdf((x1-res_mean)/res_std)*len(lr.resid)*bin_w/res_std
    plt.plot(x1,y1,'b--')
    
    pp.savefig(bbox_inches='tight', papertype='a4')
    
    
    pp.close()
    
    print("fitting parameters : ")
    for i in range(len(lr.params)):
        print("  %4d  %6.4g"%(i,lr.params[i]))
    
    print("standard error : ")
    for i in range(len(lr.bse)):
        print("  %4d  %6.4g"%(i,lr.bse[i]))
        
    print("p-value : ")
    for i in range(len(lr.pvalues)):
        print("  %4d  %6.4g"%(i,lr.pvalues[i]))
    
    #print(lr.ssr)
    print("r-square : ", lr.rsquared)

    print("** residual analysis **")
    print("skewness of residual : %6.4g"%(skew(lr.resid)))
    print("kurtosis of residual : %6.4g"%(kurtosis(lr.resid)))
    
    print("** BreuschPagan test **")
    test = sms.het_breushpagan(lr.resid, lr.model.exog)
    name = ['Lagrange multiplier statistic', 'p-value', 
        'f-value', 'f p-value']
    for i in range(len(test)):
        print("%s : %5.3g"%(name[i],test[i]))

    print("** Normality of residual **")
    k2, p = stats.normaltest(lr.resid)
    print("p-value = ", p)

    ## write a line of record to the output data file
    fpou = open("data_output.txt","a")
    
    buf = "%d %s %s"%(len(predicators), response_var, " ".join(predicators) )
    buf = buf + " %6.4g"%(lr.rsquared)
    for i in range(len(lr.params)):
        buf = buf + " %6.4g"%(lr.params[i])
    for i in range(len(lr.pvalues)):
        buf = buf + " %6.4g"%(lr.pvalues[i])
    fpou.write(buf+"\n")
    fpou.close()