def start_params(self):
        # Make sure starting parameters aren't beyond or right on the bounds
        bounds = [(x[0] + 1e-3, x[1] - 1e-3) for x in self.bounds]

        # See Hyndman p.24
        start_params = [np.clip(0.1, *bounds[0])]
        if self.trend:
            start_params += [np.clip(0.01, *bounds[1])]
        if self.seasonal:
            start_params += [np.clip(0.01, *bounds[2])]
        if self.damped_trend:
            start_params += [np.clip(0.98, *bounds[3])]
        if not self.concentrate_scale:
            start_params += [np.var(self.endog)]

        # Initialization
        if self.initialization_method == 'estimated':
            initial_level, initial_trend, initial_seasonal = (
                es_init._initialization_simple(
                    self.endog[:, 0],
                    trend='add' if self.trend else None,
                    seasonal='add' if self.seasonal else None,
                    seasonal_periods=self.seasonal_periods))
            start_params += [initial_level]
            if self.trend:
                start_params += [initial_trend]
            if self.seasonal:
                start_params += initial_seasonal.tolist()[::-1][:-1]

        return np.array(start_params)
    def __init__(self, endog, trend=False, damped_trend=False, seasonal=None,
                 initialization_method='estimated', initial_level=None,
                 initial_trend=None, initial_seasonal=None, bounds=None,
                 concentrate_scale=True, dates=None, freq=None,
                 missing='none'):
        # Model definition
        self.trend = bool_like(trend, 'trend')
        self.damped_trend = bool_like(damped_trend, 'damped_trend')
        self.seasonal_periods = int_like(seasonal, 'seasonal', optional=True)
        self.seasonal = self.seasonal_periods is not None
        self.initialization_method = string_like(
            initialization_method, 'initialization_method').lower()
        self.concentrate_scale = bool_like(concentrate_scale,
                                           'concentrate_scale')

        # TODO: add validation for bounds (e.g. have all bounds, upper > lower)
        # TODO: add `bounds_method` argument to choose between "usual" and
        # "admissible" as in Hyndman et al. (2008)
        self.bounds = bounds
        if self.bounds is None:
            self.bounds = [(1e-4, 1-1e-4)] * 3 + [(0.8, 0.98)]

        # Validation
        if self.seasonal_periods == 1:
            raise ValueError('Cannot have a seasonal period of 1.')

        if self.seasonal and self.seasonal_periods is None:
            raise NotImplementedError('Unable to detect season automatically;'
                                      ' please specify `seasonal_periods`.')

        if self.initialization_method not in ['concentrated', 'estimated',
                                              'simple', 'heuristic', 'known']:
            raise ValueError('Invalid initialization method "%s".'
                             % initialization_method)

        if self.initialization_method == 'known':
            if initial_level is None:
                raise ValueError('`initial_level` argument must be provided'
                                 ' when initialization method is set to'
                                 ' "known".')
            if initial_trend is None and self.trend:
                raise ValueError('`initial_trend` argument must be provided'
                                 ' for models with a trend component when'
                                 ' initialization method is set to "known".')
            if initial_seasonal is None and self.seasonal:
                raise ValueError('`initial_seasonal` argument must be provided'
                                 ' for models with a seasonal component when'
                                 ' initialization method is set to "known".')

        # Initialize the state space model
        if not self.seasonal or self.seasonal_periods is None:
            self._seasonal_periods = 0
        else:
            self._seasonal_periods = self.seasonal_periods

        k_states = 2 + int(self.trend) + self._seasonal_periods
        k_posdef = 1

        init = ss_init.Initialization(k_states, 'known',
                                      constant=[0] * k_states)
        super(ExponentialSmoothing, self).__init__(
            endog, k_states=k_states, k_posdef=k_posdef,
            initialization=init, dates=dates, freq=freq, missing=missing)

        # Concentrate the scale out of the likelihood function
        if self.concentrate_scale:
            self.ssm.filter_concentrated = True

        # Setup fixed elements of the system matrices
        # Observation error
        self.ssm['design', 0, 0] = 1.
        self.ssm['selection', 0, 0] = 1.
        self.ssm['state_cov', 0, 0] = 1.

        # Level
        self.ssm['design', 0, 1] = 1.
        self.ssm['transition', 1, 1] = 1.

        # Trend
        if self.trend:
            self.ssm['transition', 1:3, 2] = 1.

        # Seasonal
        if self.seasonal:
            k = 2 + int(self.trend)
            self.ssm['design', 0, k] = 1.
            self.ssm['transition', k, -1] = 1.
            self.ssm['transition', k + 1:k_states, k:k_states - 1] = (
                np.eye(self.seasonal_periods - 1))

        # Initialization of the states
        if self.initialization_method != 'known':
            msg = ('Cannot give `%%s` argument when initialization is "%s"'
                   % initialization_method)
            if initial_level is not None:
                raise ValueError(msg % 'initial_level')
            if initial_trend is not None:
                raise ValueError(msg % 'initial_trend')
            if initial_seasonal is not None:
                raise ValueError(msg % 'initial_seasonal')

        if self.initialization_method == 'simple':
            initial_level, initial_trend, initial_seasonal = (
                es_init._initialization_simple(
                    self.endog[:, 0], trend='add' if self.trend else None,
                    seasonal='add' if self.seasonal else None,
                    seasonal_periods=self.seasonal_periods))
        elif self.initialization_method == 'heuristic':
            initial_level, initial_trend, initial_seasonal = (
                es_init._initialization_heuristic(
                    self.endog[:, 0], trend='add' if self.trend else None,
                    seasonal='add' if self.seasonal else None,
                    seasonal_periods=self.seasonal_periods))
        elif self.initialization_method == 'known':
            initial_level = float_like(initial_level, 'initial_level')
            if self.trend:
                initial_trend = float_like(initial_trend, 'initial_trend')
            if self.seasonal:
                initial_seasonal = array_like(initial_seasonal,
                                              'initial_seasonal')

                if len(initial_seasonal) == self.seasonal_periods - 1:
                    initial_seasonal = np.r_[initial_seasonal,
                                             0 - np.sum(initial_seasonal)]

                if len(initial_seasonal) != self.seasonal_periods:
                    raise ValueError(
                        'Invalid length of initial seasonal values. Must be'
                        ' one of s or s-1, where s is the number of seasonal'
                        ' periods.')

        # Note that the simple and heuristic methods of computing initial
        # seasonal factors return estimated seasonal factors associated with
        # the first t = 1, 2, ..., `n_seasons` observations. To use these as
        # the initial state, we lag them by `n_seasons`. This yields, for
        # example for `n_seasons = 4`, the seasons lagged L3, L2, L1, L0.
        # As described above, the state vector in this model should have
        # seasonal factors ordered L0, L1, L2, L3, and as a result we need to
        # reverse the order of the computed initial seasonal factors from
        # these methods.
        methods = ['simple', 'heuristic']
        if (self.initialization_method in methods
                and initial_seasonal is not None):
            initial_seasonal = initial_seasonal[::-1]

        self._initial_level = initial_level
        self._initial_trend = initial_trend
        self._initial_seasonal = initial_seasonal
        self._initial_state = None

        # Initialize now if possible (if we have a damped trend, then
        # initialization will depend on the phi parameter, and so has to be
        # done at each `update`)
        methods = ['simple', 'heuristic', 'known']
        if not self.damped_trend and self.initialization_method in methods:
            self._initialize_constant_statespace(initial_level, initial_trend,
                                                 initial_seasonal)

        # Save keys for kwarg initialization
        self._init_keys += ['trend', 'damped_trend', 'seasonal',
                            'initialization_method', 'initial_level',
                            'initial_trend', 'initial_seasonal', 'bounds',
                            'concentrate_scale', 'dates', 'freq', 'missing']